

European Hardwoods for the Building Sector

Reality of today – possibilities for tomorrow

Peter Linsenmann

Motivation for EU Hardwoods

forestry

• missing market or market with low added value for hardwood

building products

- CE marking, only national technical approvals
- performance of gluing systems

mechanical data

- only few European hardwood species allocated in EN1912
- missing experience in visual and machine strength grading

research necessity with European dimension

Funding

- 4th joint call within WoodWisdom-Net
 - o as part of ERA-Net plus of FP7
 - focussing on topics in the area of interest between forestry and industry
 - $\circ\,$ with the idea to cofund national initiatives
 - → application within "Industrial processes"
- industrial partners
 - o Fa. Černivšek Jože, Fa. Hess, Fa. Noka
- associations
 - Fachverband der Holzindustrie Österreichs
 - o Studiengemeinschaft Holzleimbau

WoodWisdom-Net

Consortium

	Holzforschung Austria
	Bundesforschungszentrum für Wald
	Fachverband der Holzindustrie Österreichs

University of Ljubljana

CBD – Contemporary Building Design

MPA Stuttgart

Forstliche Versuchs- und Forschungsanstalt Baden-Württemberg

FCBA

SIMONIN SAS

6

Structure

- prerequisites
 - o no basic research
 - o holistic approach
 - o focus on industrial needs

Objectives (2)

- definition of the raw material
 - $\circ\,$ availability and log quality
 - $\circ~$ potential for different roundwood qualities and grades
- characterisation with respect to mechanical properties
 - o visual strength grading
 - o machine strength grading
- development of new high-tech products
 - \circ hybrid cross laminated timber
 - $\circ~$ simulation software for glulam built-ups
 - pre-normative adhesives testing

Agenda

13:00 - 13:20	Mission and architecture of EU Hardwoods Peter Linsenmann (Holzforschung Austria / AT)
13:20 - 13:40	Hardwood supply chain Hardwood potential and availability (present and future) <i>Udo Sauter (FVA Baden-Württemberg / DE)</i>
13:40 - 14:10	Basic hardwood strength data and grading tools Obstacles and potential of visual and machine grading of hardwoods <i>Peter Linsenmann (Holzforschung Austria / AT)</i> <i>Mitja Plos (University of Ljubljana / SL)</i>
14:10 - 14:40	Glulam made of hardwoods State of the art – species, adhesives and national/European approvals <i>Simon Aicher (MPA Stuttgart / DE</i>)
14:40 - 15:10	Coffee Break sponsored by IHF

Agenda

15:10 - 15:30	Requirements from a producer's and sawmiller's point of view, prototype production and testing of homogenous and combined oak glulam <i>Guillaume Legrand (FCBA / FR)</i>
15:30 - 15:50	Modelling and design equations for hardwood glulam (EN 14080-2) Cristóbal Tapia Camú (MPA Stuttgart / DE)
15:50 - 16:05	Glueline integrity verification for glulam made of various hardwood species <i>Maren Hirsch (MPA Stuttgart / DE)</i>
16:05 - 16:35	Hybrid beech-spruce CLT Production, advantages and design of a novel "hybrid CLT" Zachary Christian (MPA Stuttgart / DE) Iztok Šušteršič (CBD Contemporary Building Design / SL)
16:35 - 17:00	Open discussion Remaining questions, further needs, looking forward

European Hardwoods for the Building Sector (EU Hardwoods) **Workshop Garmisch-Partenkirchen** 06/12/2016

WP 1: Hardwood resources in Europe Standing stock and resource forecasts

Udo H. Sauter und Lorenz Breinig

Quantification of recent and forecast of future hardwood resources in Europe

Methods

1 Determination standing stock

- Germany
 - Results from the 3rd German national forest inventory (*Bundeswaldinventur*, *BWI*) 2012
 - Total standing stock on the entire forest area, living trees with $DBH \ge 7$ cm
 - In cubic meters solid *over* bark (m³ sob)
 - Volumes calculated with the WEHAM model based on the original inventory data: single tree data from variable-size plot sampling
 - Standing stock differentiated by species and diameter class, age class, federal state
- Austria
 - Results from the inventory 2007/09; data provided by BFW (Wolfgang Russ)
 - Standing stock in production forests, living trees with DBH \ge 7 cm
 - In cubic meters solid *over* bark (m³ sob)

1 Determination standing stock

- France
 - Results from the inventory period 2009 2013 (inventory campaigns 2009, 2010, 2011, 2012, 2013); data provided by IGN
 - Standing stock in production forests, living trees
 - Total standing stock (all trees with DBH \ge 7.5 cm)
 - Standing stock of "construction wood" (timber usable for sawing, *bois d'œuvre*): "sufficiently straight" logs with a minimum top diameter of 20 cm and a minimum length of 2 m
 - In cubic meters solid over bark (m³ sob)
 - Standing stock differentiated by species and diameter class, age class, region, forest ownership and "accessibility class" (combination of skidding distance, slope, soil bearing strength, etc.; *exploitabilité*)

2 Determination annual cut

- Germany:
 - Data provided by the German ministry of agriculture in the annual report *Holzmarkbericht*
 - In cubic meters solid *under* bark (m³ sub)
- Austria
 - Reported by the Austrian ministry of agriculture (*Bundesministerium für Land- und Forstwirtschaft, Umwelt und Wasserwirtschaft*)
 - In cubic meters solid *under* bark (m³ sub)

3 Forecast standing stock and annual cut – D, A

The WEHAM model — basic functionality

- Specifically adapted to data from the German forest inventory (BWI)
- Single-tree-based simulation of growth and harvest (and mortality); bucking/sorting module
- Input (database): individual trees from forest inventory point sampling; projection to whole forest area
- Simulation governed by a control database containing growth models, parameters of silvicultural treatment, and log bucking/sorting specifications

Restrictions

- Results only valid on a large scale (federal state is the smallest entity for analyses)
- No change of species or change of site conditions modelled
- Bucking/sorting module: standard stem models (diameter/height) used, quality not taken into account (not recorded at inventory)

Forecast of hardwood resources and harvest in Germany

Prediction of roundwood supply: Bucking/sorting variants tested

Results

Quantification of recent resources (WP1.1)

Hardwood resources in Austria, France, Germany and Slovenia

Baden-Württemberg

Hardwood resources in Germany

Hardwood resources in Germany

Annual hardwood harvest in Germany

Annual hardwood harvest in Germany

Hardwood resources in Austria

Hardwood resources in Austria

Hardwood resources in France

Hardwood resources in France

Hardwood resources in Austria, France, Germany and Slovenia

Total stocks (all four countries combined; in million m³)

- Beech: 1,116.7
- Oaks: 1,108.7
- Ash: 197.4
- Sweet chestnut: 134.7

For comparison: Softwood stocks in France and Germany (in million m³)

- Norway spruce: 1,617.6 (Silver fir: 290.4)
- Douglas fir: 184.7
- Pines (Scots pine and maritime pine): 1,048.8

In Germany, the stocks of spruce have decreased by 48.6 M m³ since the previous forest inventory (in 2002), while the stocks of beech and oaks have increased by 57.8 and 50.1 M m³, respectively.

Hardwood resources in Europe – Summary

Standing stocks

- Oak has by far the highest share of hardwood standing stock in France (59%), the second highest share in Germany (33%) but only 17% in Austria.
 Oak has the highest total standing stock of the regarded species in the three countries: ~ 1,063,600,000 m³ (sob)
- Beech has the highest share of the hardwood resource in Austria (68%) and Germany (60%) and the second highest share in France (22%).
 In total, beech has a standing stock of ~ 1,007,100,000 m³ (sob)
- Ash has shares between 7% (Germany) and 15% (Austria) → considerably less important than beech and oak.
 High uncertainty in the prediction of future availability: The rapidly spreading ash dieback disease could cause up to 90% loss of ash standing stock in some regions within the next decade
- Sweet chestnut: considerable standing stock in France (11%), only very small stocks in Austria and Germany.
 Estimates for Austria and Germany, especially diameter distribution, have a rather high standard error (± 20% in the case of Austria)

Hardwood resources in Europe – Summary

Report harvests

- Austria: Energy wood has a very high share of the annual hardwood harvest (62–72%); beech has the highest share of the annual timber harvest (48–54%)
- Germany: Beech has the highest share of timber harvest (2012: 69%); the share of energy wood is much lower than in Austria (2012: 36%)
- Reported figures on annual harvest can only be seen as a (rather coarse) estimate; especially harvested volumes from small private forest properties are often estimated

Forecast to future resource availability (WP1.2)

Forstliche Versuchsund Forschungsanstalt Baden-Württemberg

Forecast of hardwood resources and harvest in Germany

WEHAM prediction of standing stocks according to the official scenario

Forecast of hardwood resources and harvest in Germany

WEHAM prediction of annual harvest volumes according to the official scenario

Forecast of hardwood resources and harvest in Germany

Resource forecasts for Austria: Overestimation of growth and fellings

Baden-Württemberg

Resource forecasts for Austria: Overestimation of growth and fellings

Resource forecasts for Austria: Overestimation of growth and fellings

Approach:

- Re-parameterization of growth models in WEHAM with repeated inventory data for beech and oak (Data from ÖWI 2007–09 and preceeding inventory provided by BFW)
- Repetition of simulations

Forstliche Versuchsund Forschungsanstalt Baden-Württemberg

Resource forecasts for France: Study by IGN/FCBA

- First study on potential roundwood availability covering the entire forest area in France: *Disponibilités forestières pour l'energie et les matériaux à l'horizon 2035*; on request by the French environment agency
- Data basis: Inventory 2009–2013
- Models of growth/mortality and silviculture yield gross annual availability (comparable to the annual fellings in WEHAM)
- Applying volume reductions due to technical/economical restrictions leads to "usable annual availability"
- Two scenarios:
 - constant management: maintaining mean felling rates observed between the last two inventories for the distinguished forest type units (strata)
 - "dynamic management": progressively applying the highest observed felling rate to the entire stratum

d Forschungsanstalt den-Württemberg

Resource forecasts for France: Study by IGN/FCBA

Usable annual availability of hardwood timber (all species combined):

- increase from 9.7 to 11.9 M m³/a in the constant management scenario
- increase from 9.7 to 15.2 M m³/a in the "dynamic management" scenario

Baden-Württemberg

Forecast of Hardwood resources in Europe – Summary

Standing stocks

- All species show an increasing or at least constant development of the standing stock for the involved countries
- An exception is ash which may show instable growth and stock volume because of the dieback disease

Harvests

 Despite some methodical uncertainties related to the WEHAM forcast software approach, which was developed for German growth conditions constant or even increasing annual cuts for main hardwood species beech and oak throughout the next decades can be expected

Forstliche Versuchs-Ind Forschungsanstalt Baden-Württemberg

Thank you for your attention!

European Hardwoods for the Building Sector

grading of hardwoods

Peter Linsenmann

Additional focus areas of HFA

	mm x mm	Ν
beech	30 x 150	83
ash	30 x 150	49
	30 x 200	60
oak	25 x 120	8
	30 x 150	75
Sweet chestnut	30 x 150	94
total		369

- origin in south-western Germany
- collaboration between FVA and HFA

tensile strength test acc. to

ÖNORM EN 408 Ausgabe: 2012-09-01

visual grading acc. to

ÖNORM DIN 4074-5

Ausgabe: 2009-06-15

6

visual strength grades – all criteria acc. to DIN4074-5

	DIN 4074-5:2009 (DE / AT / SI)	NF B52-001-1:2011 (FR)			
species	all hardwoods	tropical hardwoods, oak			
	knots, fibre deviation, bow / twist, cracks, wane, discolouration, insect damage				
criteria		sapwood			
	pith, annual ring width				

visual strength grades – all criteria acc. to DIN4074-5

visual strength grades – all strength criteria acc. to EN14081-1

knot (single, 150 mm) fibre deviation, pith wane, cracks twist, bow

stepwise linear regression on tensile strength

	single knot	knot cluster	fibre deviation	annual ring width	pith	woq	R²
beech	1				2		0,49
ash	1		3		2		0,46
oak	1		2	3		4	0,47
Sweet chestnut	1	3			2		0,54

	single knot	knot cluster	fibre deviation	annual ring width	pith	how	R²
beech	1				2		0,49
ash	1		3		2		0,46
oak	1		2	3		4	0,47
Sweet chestnut	1	3			2		0,54

- existing German visual grading rule partly suited for strength grading
- grading criteria with the most impact
 - single knot value
 - \circ pith
 - o fibre deviation

 microwave transmission as one possibility for machine strength grading

(direction u)

elliptical polarisation

orientation (horizontal)

- two measurements -45° / +45°
- two angles ω₁, ω₂
- determination of vertical fibre orientation → spatial direction

- prerequisites:
 - \circ 40 specimens 20 with high and 20 with low fibre deviations
 - only 30 x 150 mm² due to screens (edge diffraction)
 - \circ measurement within the test span
- definition of training and test sample
 - $_{\odot}\,$ information on logs is available \rightarrow basis for classification
 - \circ all boards of one log assigned to training or test no splits
 - distribution within training and test as representative as possible (density, tensile strength)

- development of regression model
 - o derivation based on training
 - o dependent variable is tensile strength
 - independent variables
- Iimitation: small sample size
 - o IP models indicative
 - not necessarily applicable on boards from a different sample or species

	training	test	total
beech	21	20	41
ash	23	14	37
oak	18	27	45
Sweet chestnut	26	17	43
total	88	78	166

• abbreviations: $e \rightarrow E_dyn / k \rightarrow tkar_{150} / o \rightarrow angle \omega$ ("diving") / t \rightarrow anlge ϑ ("in plane")

Test sample "allocation"

- allocation tests for Austrian beech in EN1912 in progress
 - first sampling in Austria completed Vienna Woods / Lower Austria / Styria / Upper Austria – 400 specimens
 - $\circ\,$ selection and grading at sawmill in Styria
 - o currently data analysis

Test sample "allocation"

 Slovenian tests on beech for allocation and modelling

HOL7

Glulam made of hardwoods State of the art – species, adhesives and national/European approvals

Simon Aicher

Materials Testing Institute University of Stuttgart Department of Timber Constructions

Simon Aicher

Yesterday...

III

K

HER HER

E

XA

product	Harmonized European building product standard hEN	European Technical Assessment ETA
GLT from softwoods	EN 14080:2013	-
GLT from hardwoods	-	CUAP 03.04/29-1:2013 for GLT from oak, beech, chestnut EAD 130010-00-0304:2014 for GLT from beech LVL

- 1. Classified build-ups based on standardized lamination T-classes; the build-ups result from the EN 14080 calculation model
- 2. Calculated build-ups (EN 14080 calculation model) based on

i) either standardized lamination T-classes acc. to EN 14080 or
 ii) test derived lamination strength / stiffness /density (EN 408; EN 384) and

iii) declared finger joint strengths (within model boundaries)

- 3. Test based glulam strength class/profile
 - i) tests with laminations
 - ii) tests with finger joints
 - iii) tests with beams

$$f_{m,g,k} = -2.2 + 2.5 (f_{t,0,l,k})^{0.75} + 1.5 (f_{m,j,k}/1.4 - f_{t,0,l,k} + 6)^{0.65}$$

 $\begin{array}{l} f_{m,g,k} \\ f_{t,0,l,k} \end{array} \mbox{ characteristic glulam bending strength} \\ f_{t,0,l,k} \mbox{ characteristic tension strength of lamination} \\ f_{m,j,k} \mbox{ characteristic bending strength of finger joint} \end{array}$

only valid if either

1,4
$$f_{t,0,l,k} \le f_{m,j,k} \le 1,4 f_{t,0,l,k} + 12$$

or (with
$$f_{m,j,k} = 1,4 f_{t,0,j,k}$$
)

 $f_{t,0,j,k} \ge f_{t,0,l,k}$ or equally $f_{m,j,k} \ge f_{m,l,k}$

Tensile strength parallel to grain: $f_{t,0,g,k} = 0.8 f_{m,g,k}$

Compression strength parallel to grain: $f_{c,0,g,k} = 1,0 f_{m,g,k}$

Modulus of elasticity parallel to grain: $E_{0,g,mean} = 1,05 E_{t,0,l,mean}$

Tensile strength perp. to grain: $f_{t,90}$

Compression strength perp. to grain:

Shear strength:

Modulus of elasticity perp. to grain:

f_{c,90,g,k} = 2,5 MPa

E_{90,g,mean} = 300 MPa

EN 14080 Table 1 (extract)

T - class of boards ^a	<i>f</i> t,0,1,k	$E_{\rm t,0,l,mean}$	ρ _{l,k}		
T14 (C24)	14	11 000	350		
T14,5	14,5	11 000	350		
T15	15	11 500	360		
T16 (C27)	16	11 500	370		
T18 (C30)	18	12 000	380		
T21 (C35)	21	13 000	390		
T22	22	13 000	390		
T24 (C40)	24	13 500	400		
T26	26	14 000	410		
T27 (C45)	27	15 000	410		
T28	28	15 000	420		
T30 (C50)	30	15 500	430		
^a The C-Classes according to EN 338:2009 meet at least the required values of the respective T-classes.					

EN 14080 Table 2 (extract)

Glued laminated timber	Outer zor	nes of lam	inations	Intermediate zones of laminations			Inner zo	ne of lami	nations
Strength class	Strength class	Propor- tion	∫m,j,k	Strength class	Propor- tion	$f_{\mathrm{m,j,k}}$	Strength class ^a	Propor- tion	$f_{\mathrm{m,j,k}}$
		[%]	[N/mm ²]		[%]	[N/mm ²]		[%]	[N/mm ²]
GL 20c	T13	2x33	21	-	-	-	Т8	34	18
GL 22c	T13	2x33	26	-	-	-	Т8	34	18
GL 24c	T14	2x33	31	-	-	-	Т9	34	19
GL 30c	T22	2x17	40	-	-	-	T15	66	27
GL 30c	T22	2x17	41	-	-	-	T14	66	28
GL 30c	T22	2x20	40	T14	2x20	30	T11	20	22
GL 30c	T22	2x17	42	T14	2x23	31	T11	20	22
GL 32c	T24	2x17	44	-	-	-	T18	66	31
GL 32c	T26	2x17	45	-	-	-	T14	66	26
GL 32c	T26	2x10	48	T18	2x20	32	T11	40	22

Beam build-ups (GLc) and finger joint reqirements

EN 14080 Table 4 (extract)

		Glulam strength class						
Property ^a	Symbol	GL 20c	GL 22c	GL 24c	GL 26c	GL 28c	GL 30c	GL 32c
Bending strength	$f_{m,g,k}$	20	22	24	26	28	30	32
Tensile strength	∫t,0,g,k	15	16	17	19	19,5	19,5	19,5
	<i>f</i> t,90,g,k				0,5			
Compression strength	$f_{\rm c,0,g,k}$	18,5	20	21,5	23,5	24	24,5	24,5
	<i>f</i> с,90,g,k				2,5			
Shear strength (shear and torsion)	$f_{v,g,k}$				3,5			
Rolling shear strength	$f_{\rm r,g,k}$				1,2			
Modulus of elasticity	$E_{0,g,mean}$	10 400	10 400	11 000	12 000	12 500	13 000	13 500
	E _{0.g,05}	8 600	8 600	9 100	10 000	10 400	10 800	11 200
	$E_{90,g,mean}$	300						
	$E_{90,g,05}$				250			

- 1. Oak (France [23%], Germany [10%], Czech Rep.,..)
- 2. Beech (Germany [15%], France [11%],..)
- 3. Chestnut (France [5%], Spain, Italy,..)
- 4. Birch (Finland, Russia)
- 5. Poplar (Italy, France, Romania)
- 6. Eucalyptus grandis (Spain)
- 7. Robinia (Hungary)
- 8. Ash (Germany, Switzerland)

Adhesives for structural hardwood bonding

Approved adhesives for structural hardwood bonds

Wood species	PRF	MUF	Appli- cation	PU with primer				
Oak (Quercus petraea, Quercus robur)	• Aerodux 185/ HRP 150/155 (Dynea AS)	 GripPro™Design (Akzo Nobel Adhesives AB) 	• S/M					
Beech (<i>Fagus sylvatica</i>)	 Aerodux 185/ HRP 150/155 (Dynea AS) Prefere 4040/5839 (Dynea AS) Bakelite PF 1993 HL/ PF 2003 H (Hexion) 	 GripPro[™]Design (Akzo Nobel Adhesives AB) Prefere 4535/5046 (Dynea AS) Kauramin 683/688 (BASF SE) 	S/MMM	 LOCTITE HB S309 Purbond + Primer LOCTITE PR 3105 Purbond (Henkel & Cie. AG) 				
Chestnut (Castanea sativa)		 GripPro™Design (Akzo Nobel Adhesives AB) Prefere 4535/5035 (Dynea AS) 	• S/M • M					
Birch (Betula spec.)		 GripPro™Design (Akzo Nobel Adhesives AB) 	• S/M					
	S = separate application of resin and hardener M = mix-in application							

Approved hardwood glulams (ETAs and national)

First year of	Approval		Species of	Service Class	Holder of Approval
approval	German Technical Approval Z-9.1	European Technical Approval ETA	laminations (origin)	for glulam use	
2004	577	-	Dark Red Meranti (Indonesia)	1, 2	Enno Roggemann, Bremen, Germany
2008 – 2012	Approvals in single	e cases (Germany)	Oak (Germany, Czech Rep.)	1	Different holders, Germany
2009	679	-	Beech (Germany)	1	Studiengemeinschaft Holzleimbau, Wuppertal, Germany
2012 2013	704 -	- 13/0642	Oak (France)	1, 2	Elaborados y Fabricados Gamiz, S.A., Spain
2013	821	-	Oak (Germany, Czech Rep.)	1, 2	Holz Schiller GmbH, Regen; Germany
2013	-	13/0644	Sweet Chestnut (Spain)	1, 2	SIEROLAM SA., Spain
2013 2015	837 -	- 14/0354	Beech LVL (Germany)	1, 2	Pollmeier Furnierwerkstoffe GmbH, Creuzburg; Germany

limitations

Wood species	oak	chestnut	beech
max. width of lamellae (mm)	160	200	160
max. thickness of lamellae (mm)	20	30	30
max. depth of GLT (mm)	400	900	900
min/max width of GLT (mm)	50 - 160	50 - 200	50 - 200
max. length of GLT (m)	12	18	18
service classes	1 and 2	1 and 2	1
moisture content (%)	8 - 12	8 - 12	8 - 12
min number of lamellae	4	4	4

Product characteristics	method of verification	method of assessing and judgement	No of samples	Declaration in ETA
density	EN 408	x ₀₅ , x ₉₅ acc. to EN 14358	100 per grade/dimension	-
Tensile strength and modulus of elasticity parallel to grain	EN 408 (cl. 12 + 13)	x ₀₅ (f _{t,0}) x ₅₀ (E ₀) EN 408 + EN 14358	100 per grade/dimension	f _{t,0,I,k} E _{0,mean}
Bending strength	-	-	100	-
Tensile strength of finger joints	EN 408 (free length 200 mm)	x ₀₅ (f _{t,j}) EN 408 + EN 14358	100 per grade/dimension	f _{t,j,05}
Bending strength of finger joints	EN 385	x ₀₅ (f _{m,j}) EN 385 + EN14358	100 per grade/ dimension	f _{m,j,05}

Product characteristics	method of verification	method of assessing and judgement	No of samples	Declaration in ETA
Bending strength (+ modulus of elasticity and modulus of rigidity)	EN 408 (cl. 9,10,19,11.2)	EN 408 x ₀₅ (f _m) x ₅₀ (E _m) x ₅₀ (G) EN 14358	30 per dimension	$f_{m,05}$ $E_{m,mean}$ G_{mean}
Compression strength	EN 408 (cl. 15)	EN 408 x ₀₅ (f _{c,0}) EN 14358	15 per dimension	f _{c,05}
Tensile strength	EN 408 (cl. 13), alternatively estimated from min(f _{t,0,l,k} ; f _{t,0,j,k})	EN 408 x ₀₅ (f _{t,0}) EN 14358	15 per dimension	f _{t,05}
Shear strength	Principle of EN 408, but l/h = 8	x ₀₅ (f _v) CUAP 03.04/29+ EN 14358	15 per dimension	f _{v,05}

Oak glulam (Z - 9.1- 821), company Schiller, Germany

Source: Germany, Czech Rep.

Simon Aicher

Beech glulam, company Hess Timber, Germany

Simon Aicher

A new EAD and a respective new ETA is preparation, allowing for considerably increased dimensions (depth 2 m, length 30 m) and block glued crosssections

Tensile strength of European hardwood lamellas

Hardwood glulam E-modules

Simon Aicher

Hardwood glulam compression strengths

Beech LVL glulam – compression strength parallel

approved hardwood GLT	lamination grade	bending strength of lamination f _{m,l,k} (MPa)	bending strength of finger Joint (MPa) f _{m,j,k}	$\frac{f_{m,j,k}}{f_{m,l,k}}$
Chestnut Sierolam	S13	34	45	1,32
Oak	(S10)	38	49	1,29
Vigam	(S13)	47	51	1,09
Oak Schiller	(S13+)	≥ 80	≥ 60	0,75
Producer xy	-	50	31	0,62

Condition of EN 14080 $f_{m,j,k} \ge f_{m,l,k}$ often not fulfilled, hence present EN 14080calculation procedure not applicable

State of the art in Europe

Any further questions?

No! → Thank you very much for your audience!

Requirements from GL producer's and sawmiller's point of view, prototype production and testing of homogenous and combined oak glulam in France

Guillaume Legrand, Morgan Vuillermoz Technology Institute FCBA

EU Hardwood side-event at Garmish

Strong willingness to put hardwoods to good and larger use in buildings and constructions.

- → Undertaken investigations:
 - Possible degrees of change at primary processing including round wood supply, and secondary processing - in comparison to current value chain
 - Testing of the new glulam products accessible through those alternative pathways
 - Related consequences in terms of production performances, economical balance and organization (intra and inter company)
- ⇒ Recommendations for changes in production chain and adapted lamella specifications (compromise)

1st scenario for test production (2015) New business relationships to be built but minimal internal change required from sawmiller and GL producer

- How good for glulam are lamellae picked up from existing stocks of usual square-edged timber produced at oak sawmill?
- And what would be required along the chain to improve performances?

Requirements from GL producer's and sawmiller's point of view, prototype production and testing of homogenous and combined oak glulam in France

1st scenario for test production (2015) Sampling of QF2 / QF3 oak lamellae

Chosen specifications for oak lamellae: traditional square edged timber

- Dimension : $27 \pm 1 \times 160 \text{ mm}$
- Length : 1.1 to 2,8 m ; mean = 1,8 m
- Moisture content: 10-12%
- Aesthetics: QF2 and QF3 classes acc. to EN 975-1
- Time before delivery: 3 weeks !
- Volume: 20 m³
- \rightarrow Several origins : heterogeneity of the sampling
- \rightarrow QF1 class sawings to complete the volume ...

1st scenario for test production (2015) Sorting of D18, D24 and D30 strength classes oak lamellae

- Sawings : 27 x 160 mm² \rightarrow laminations : 24 x 160 mm²
- Strength grading through equivalence D24 (from QF2 / QF3) and *extra* D18 (from QF2 / QF3) and D30 (from QF1) by FCBA acc. to NF B 52001-1
- E_{dyn} (MTG)
- Density
- ightarrow Selection of lamellae with comparable characteristics to compose each beam
- \Rightarrow beams

1st scenario for test production (2015) Production of homogenous and combined oak glulam out of D18, D24 and D30 lamellae

Extra

Production at SIMONIN (Montlebon, FR) with a MUF adhesive from AKZO NOBEL

		Lamell	ае	Beams		
	Composition	Strength grade	n / beam	Cross-section (mm²)	n	
	Homogenous	D24	8	160 x 160	20	
	Homogenous	D24	15	300 x 160	20	
	Homogenous	D30	9	180 x 160	20	
	Combined	D30 / D18 / D30	3 - 3 - 3	180 x 160	10	

Requirements from GL producer's and sawmiller's point of view, prototype production and testing of homogenous and combined oak glulam in France 1st scenario for test production (2015) Testing of homogenous and combined oak glulam out of D18, D24 and D30 lamellae

Testing at FCBA according to EN 14080 - 2013 :

- Massive laminations : flat wise bending test
- Finger jointed laminations : flat wise bending test
- Beams :
 - Bending and compression tests
 - Bonding quality : delamination and shear tests
 - Map of the failure

1st scenario for test production (2015) Testing of homogenous oak glulam out of D24 lamellae

Properties		Beams composition			
		D24 Visual strength grading acc. to NF B 52001-1			
		Results Correction to h = 300 mm n = 40	GL24h Acc. to EN 14080:2013 for softwoods $C24 \rightarrow GL24h$ Correction to h = 300 mm		
Beams	Modulus of elasticity in bending E _{0,g,mean} (N/mm²)	11 700 7	⊭ 11 500		
	Bending strength f _{m,g,mean} (N/mm²)	42,8	/		
	Bending strength f _{m,g,k} (N/mm²)	32,4	> 27,0		
	Density ρ _{g,mean} (kg/m³)	653	/		
	Density ρ _{g,k} (kg/m³)	627	> 385		
Finger joints n = 30	Bending strength f _{m,g,k} (N/mm²)	30,1	30,0		

1st scenario for test production (2015) Testing of homogenous and combined oak glulam out of D18 and D30 lamellae

Properties		Beams composition					
		Visual strength	D30 grading acc. to NF B 52001-1	D30 / D18 / D30 Visual strength grading acc. to NF B 52001-1			
		Results h = 180 mm n = 20	GL28h Acc. to EN 14080:2013 for softwoods C30 \rightarrow GL28h Correction to h = 180 mm	Results h = 180 mm n = 10	GL28c Acc. to EN 14080:2013 for softwoods C30 / C18 \rightarrow GL28c Correction to h = 180 mm		
Beams	Modulus of elasticity in bending E _{0,g,mean} (N/mm²)	11 400	< 12 600	11 200	< 12 500		
	Bending strength f _{m,g,mean} (N/mm²)	46,3	/	52,6	/		
	Bending strength f _{m,g,k} (N/mm²)	35,7	> 33,2	34,2	> 33,0		
	Density ρ _{g,mean} (kg/m³)	655	/	662	/		
	Density ρ _{g,k} (kg/m³)	622	> 425	638	> 387		
Finger joints n = 30	Bending strength fm,g,k (N/mm²)	29,6	36	<mark>29,6</mark> 36,0	38,6 26,0		

1st prototype production (2015)

Lessons learnt from sawmill and GL producer point of view

- Homogenous Oak glulam comparable to softwoods glulam GL24h could be produced from D24 visually graded French oak which can already be sourced as traditional square-edged product at sawmill
- Glulam modulus of elasticity and finger jointed lamella strength are main factors limiting the performances of Oak glulam produced from lamellae from higher class D30
- Supplier client relationship can be woven between sawmiller and GL producer but expectations will be fulfilled only under adapted conditions:
 - Longer time for delivery and visibility on annual demand for the sawmill
 - Strength grading (visual method) performed at the sawmill
 - Acceptation of mixes of lengths and qualities by GL producers

2nd scenario for test production (2016) What if we could make the best of the mixed forest resource and dared combined-GL products?

- How performant would homogenous and combined oak glulam be when produced from **purposely-specified round wood**?
- What are the consequences of such change along the chain, from sourcing to sawmilling and glulam production?

2nd scenario for test production (2016) Design and monitoring

Changes introduced at every step of the production chain:

- 1. Purpose-driven round wood specifications used to identify a suitable batch
 - → D2b D3 diameter class and < 100 years old stand, as documented by the national study on French oak resource (Lanvin & Reuling 2009)
 - Lack of opportunities on the market
 - High mechanical performances
 - \rightarrow Found on round wood auction catalog (ONF FD Sarrebourg FR)
- 2. Purpose-driven sawing and processing at sawmill used to deal with such diameter / quality class (Trendel Haguenau FR)
 - + Strength grading and check Vs GL producer requirements for immediate processing (FCBA for Trendel FR)
- 3. Combined glulam production (SIMONIN Montlebon FR)
 - \rightarrow Acceptation of all qualities using the right quality at the right place

And *feedback* collected by FCBA along the chain on quantitative (yield, strength properties, ...) and qualitative (organization, service and quality, ...) aspects

2nd scenario for test production (2016) Sampling

Chosen specifications for oak lamellae: sawings from specific D2b - D3 diameter class and < 100 years old round woods

- Dimension : 24 x 160 mm
- Length : 1,1 to 2,9 m ; mean : 2,1 m
- Moisture content: 8-10%
- Time before delivery: 3 months
- Volume: 10 m³
- \rightarrow Single origin
- \Rightarrow Homogeneity of the sampling

2nd scenario for test production (2016) Sorting of D18, D24, D30 and D40 oak lamellae

Strength grade	Distribution %
D18	5
D24	13
D30	44
D40	37

- Sawings : 23 x 160 mm²
- Strength grading through equivalence D18 to D40 acc. to # NF B52001-1
- E_{dyn} (MTG)
- Density
- \Rightarrow Design of beams

2nd scenario for test production (2016) Production of homogenous and combined oak glulam out of D18 to D40 lamellae

Production at SIMONIN (Montlebon, FR) with a MUF adhesive from AKZO NOBEL

	Lamell	ae	Beams		
Composition	Strength grade	n / beam	Cross-section (mm²)	n	
Homogenous	D30	9	180 x 160	25	
Combined	D30 / D18 / D30	3 - 3 - 3	180 x 160	5	
Homogenous	D40	9	180 x 160	15	
Combined	D40 / D24 / D40	3 - 3 - 3	180 x 160	15	

2nd scenario for test production (2016) Production of homogenous and combined oak glulam out of D18 to D40 lamellae

Testing at FCBA according to EN 14080 - 2013 :

- Massive laminations : flat wise bending and tensile test
- Finger jointed laminations : flat wise bending test
- Beams :
 - Bending tests
 - Bonding quality : delamination and shear tests
 - Map of the failure

2nd scenario for test production (2016) Testing of homogenous and combined oak glulam out of D18 and D30 lamellae

Properties		Beams composition					
		D30 Visual strength grading acc. to # NF B 52001-1			D30 / D18 / D30 Visual strength grading acc. to # NF B 52001-1		
		Results h = 180 mm n = 25	Acc	GL28h to EN 14080:2013 for softwoods C30 \rightarrow GL28h ection to h = 180 mm	Results h = 180 mm n = 5	GL28c Acc. to EN 14080:2013 for sofwoods C30 / C18 / C30 \rightarrow GL28c Correction to h = 180 mm	
Beams	Modulus of elasticity in bending E _{0,g,mean} (N/mm²)	15 800	>	12 600	15 000	> 12 500	
	Bending strength f _{m,g,mean} (N/mm²)	63,8		/	56,3	/	
	Bending strength f _{m,g,k} (N/mm²)	46,5	>	33,2	Х	33,0	
	Density ρ _{g,mean} (kg/m³)	725		/	729	/	
	Density ρ _{g,k} (kg/m³)	703	>	425	х	387	
Finger joints n = 30	Bending strength f _{m,g,k} (N/mm²)	54,5		36	54,5 57,7	38,6 26,0	

2nd scenario for test production (2016) Testing of homogenous and combined oak glulam out of D24 and D40 lamellae

Properties		Beams composition					
		D40 Visual strength grading acc. to # NF B 52001-1			D40 / D24 Visual strength grading acc. to # NF B 52001-1		
		Results h = 180 mm n = 15	Acc. Corre	GL32h to EN 14080:2013 for sofwoods $C40 \rightarrow GL32h$ ection to h = 180 mm	Results h = 180 mm n = 15	Acı C Corr	GL32C c. to EN 14080:2013 for sofwoods $40 / C24 \rightarrow GL32c$ ection to h = 180 mm
Beams	Modulus of elasticity in bending E _{0,g,mean} (N/mm²)	16 300	>	14 200	17 100	>	14 600
	Bending strength f _{m,g,mean} (N/mm²)	81,2		/	71		/
	Bending strength f _{m,g,k} (N/mm²)	61,7	>	37,9	55,1	>	39,1
	Density ρ _{g,mean} (kg/m³)	726		/	732		/
	Density ρ _{g,k} (kg/m³)	709	>	440	712	>	424
Finger joints n = 30	Bending strength f _{m,j,k} (N/mm²)	59,8		41	59,8 52,5		48,4 32,3

2nd scenario for test production (2016) Lessons learnt from sawmill and GL producer point of view

- Well performing homogenous and combined oak glulam can be produced from lamellae sawn out of chosen round wood resource allowing to overcome the limiting effect of modulus of elasticity of traditional square edged oak timber
- Prototype processing at the sawmill was hindered by too tight time constraints and, to a lesser extend, diameter class but those limits can be overcome in case of lessexperimental conditions
- As in 1st prototype production, supplier client relationship can be woven between sawmiller and GL producer but expectations will be fulfilled only under adapted conditions
 - Longer time for delivery for the sawmill
 - Strength grading (visual method) performed at the sawmill for the GL producer

Comparative performances of prototype productions

	Reference production	1 st prototype production	2 nd prototype production
Round wood	Northern EU	2 nd log of large diameter high quality (B) oak	Butt log of mid diameter oak thinnings (CD)
Sawmilling	Imports	Usual square edged timber sorted as D24, with <i>extra</i> D18 and D30	Purpose-driven sawn lamellae sorted as a mix of D40, D30, D24 and D18
GL production	100	277	283
GL type	Spruce	Oak	Oak
Degree of change	Business as usual	Small change	Change at every step of the chain

20 | December 2016

Lessons learnt from sawmill and glulam producer point of view

- Glulam produced out of French oak can reach high in terms of strength performances and combined glulam are worth being considered
- Even if production efficiency can be reached through less experimental organization, oak glulam should not compete with softwoods glulam but instead find its own market using its mechanical, aesthetical and social assets
- Supplier client relationship can be woven between sawmillers and GL producers but expectations will be fulfilled only under adapted conditions:
 - Longer time for delivery and visibility on annual demand for the sawmill
 - Strength grading (visual method) performed at the sawmill for the GL producer
 - Acceptation of mixes of lengths and qualities by the GL producers

Additionnal lessons learnt from prototype productions

 Results from test productions 1 + 2 can contribute to the development of a new model for the prediction of the behavior of glulam made of hardwoods and support the introduction of new standard classes in a future harmonized standard

Example of model for MOE based on test productions 1 + 2

Modelling and design equations for hardwood glulam

Cristóbal Tapia Camú

Material Testing Institute, University of Stuttgart Division of Timber Constructions

<1> Introduction

• There is no general model to design *hardwood* glulam beams as compared with softwood glulam

- There is no general model to design *hardwood* glulam beams as compared with softwood glulam
- There is a simplified Weibull model for *hardwoods* (Aicher and Stapf, 2013)

- There is no general model to design *hardwood* glulam beams as compared with softwood glulam
- There is a simplified Weibull model for *hardwoods* (Aicher and Stapf, 2013)
- For softwoods, according to EN 14080 (Freese, 2006):

$$f_{m,g,k} = -2.2 + 2.5 \cdot f_{t,0,\ell,k}^{0.75} + 1.5 \cdot \left(\frac{f_{m,j,k}}{1.4} - f_{t,0,\ell,k} + 6\right)^{0.65}$$

valid only for

$$1.4 \cdot f_{t,0,\ell,k} \leq f_{m,j,k} \leq 1.4 \cdot f_{t,0,\ell,k} + 12$$

- There is no general model to design *hardwood* glulam beams as compared with softwood glulam
- There is a simplified Weibull model for *hardwoods* (Aicher and Stapf, 2013)
- For softwoods, according to EN 14080 (Freese, 2006):

$$f_{m,g,k} = -2.2 + 2.5 \cdot f_{t,0,\ell,k}^{0.75} + 1.5 \cdot \left(\frac{f_{m,j,k}}{1.4} - f_{t,0,\ell,k} + 6\right)^{0.65}$$

valid only for

$$1.4 \cdot f_{t,0,\ell,k} \le f_{m,j,k} \le 1.4 \cdot f_{t,0,\ell,k} + 12$$

$1.4 \cdot f_{t,0,\ell,k} \leq f_{m,j,k}$

$$1.4 \cdot f_{t,0,\ell,k} \le f_{m,j,k} \\ 1.4 \cdot f_{t,0,\ell,k} \le 1.4 \cdot f_{t,j,k}$$

$$1.4 \cdot f_{t,0,\ell,k} \leq f_{m,j,k} \\ 1.4 \cdot f_{t,0,\ell,k} \leq 1.4 \cdot f_{t,j,k} \\ 1 \leq \frac{f_{t,j,k}}{f_{t,0,\ell,k}}$$

Introduction

$$f_{m,g,k} = -2.2 + 2.5 \cdot f_{t,0,\ell,k}^{0.75} + 1.5 \cdot \left(\frac{f_{m,j,k}}{1.4} - f_{t,0,\ell,k} + 6\right)^{0.65}$$

Introduction

$$f_{m,g,k} = -2.2 + 2.5 \cdot f_{t,0,\ell,k}^{0.75} + 1.5 \cdot \left(\frac{f_{m,j,k}}{1.4} - f_{t,0,\ell,k} + 6\right)^{0.65}$$

<2> Modelling hardwood glulam

• Create a model to predict bending strength of glulam, based on the results obtained from tests of single boards and finger-joints.

- Create a model to predict bending strength of glulam, based on the results obtained from tests of single boards and finger-joints.
- Finite Element stochastic model (Monte-Carlo simulation)

- Create a model to predict bending strength of glulam, based on the results obtained from tests of single boards and finger-joints.
- Finite Element stochastic model (Monte-Carlo simulation)
- Failure mechanism taken into account using *XFEM* and *fracture energies*

- Create a model to predict bending strength of glulam, based on the results obtained from tests of single boards and finger-joints.
- Finite Element stochastic model (Monte-Carlo simulation)
- Failure mechanism taken into account using *XFEM* and *fracture energies*
- ... different fracture energies for finger-joints and boards

Individual boards

Needed distributions:

Needed distributions:

• Modulus of Elasticity (MOE)

Needed distributions:

- Modulus of Elasticity (MOE)
- Tensile strengths

Needed distributions:

- Modulus of Elasticity (MOE)
- Tensile strengths / compressive strengths

Needed distributions:

- Modulus of Elasticity (MOE)
- Tensile strengths / compressive strengths
- Lengths

Also, it is important to get some correlations between these values

Also, it is important to get some correlations between these values

• A simple experiment was performed

- A simple experiment was performed
- Extensometer with length = 230 mm was used

- A simple experiment was performed
- Extensometer with length = 230 mm was used

- A simple experiment was performed
- Extensometer with length = 230 mm was used

- A simple experiment was performed
- Extensometer with length = 230 mm was used

- A simple experiment was performed
- Extensometer with length = 230 mm was used

- A simple experiment was performed
- Extensometer with length = 230 mm was used

- A simple experiment was performed
- Extensometer with length = 230 mm was used

- A simple experiment was performed
- Extensometer with length = 230 mm was used

- A simple experiment was performed
- Extensometer with length = 230 mm was used

- A simple experiment was performed
- Extensometer with length = 230 mm was used

Characterization of the material properties

Finger-joints

FE-Model

beam failure

beam failure

beam failure

Compare experimental results for hardwood glulam beams

- Compare experimental results for hardwood glulam beams
- One of the datasets of the Wood-Wisdom project was used, tested at FCBA and produced by the company Simonin

- Compare experimental results for hardwood glulam beams
- One of the datasets of the Wood-Wisdom project was used, tested at FCBA and produced by the company Simonin
 - $d \times b = 160 \text{ mm} \times 160 \text{ mm}$ (8 laminations)

- Compare experimental results for hardwood glulam beams
- One of the datasets of the Wood-Wisdom project was used, tested at FCBA and produced by the company Simonin
 - $d \times b = 160 \text{ mm} \times 160 \text{ mm}$ (8 laminations)
 - $d \times b = 300 \text{ mm} \times 160 \text{ mm}$ (15 laminations)

- Compare experimental results for hardwood glulam beams
- One of the datasets of the Wood-Wisdom project was used, tested at FCBA and produced by the company Simonin
 - $d \times b = 160 \text{ mm} \times 160 \text{ mm}$ (8 laminations)
 - $d \times b = 300 \text{ mm} \times 160 \text{ mm}$ (15 laminations)
- Number of simulations:

- Compare experimental results for hardwood glulam beams
- One of the datasets of the Wood-Wisdom project was used, tested at FCBA and produced by the company Simonin
 - $d \times b = 160 \text{ mm} \times 160 \text{ mm}$ (8 laminations)
 - $d \times b = 300 \text{ mm} \times 160 \text{ mm}$ (15 laminations)
- Number of simulations:
 - 8 laminations: N = 300

- Compare experimental results for hardwood glulam beams
- One of the datasets of the Wood-Wisdom project was used, tested at FCBA and produced by the company Simonin
 - $d \times b = 160 \text{ mm} \times 160 \text{ mm}$ (8 laminations)
 - $d \times b = 300 \text{ mm} \times 160 \text{ mm}$ (15 laminations)
- Number of simulations:
 - 8 laminations: N = 300
 - 15 laminations: N = 182

- Compare experimental results for hardwood glulam beams
- One of the datasets of the Wood-Wisdom project was used, tested at FCBA and produced by the company Simonin
 - $d \times b = 160 \text{ mm} \times 160 \text{ mm}$ (8 laminations)
 - $d \times b = 300 \text{ mm} \times 160 \text{ mm}$ (15 laminations)
- Number of simulations:
 - 8 laminations: N = 300
 - 15 laminations: N = 182
 - 30 laminations: N = 49

Design equation

Design equation

$$f_{m,g,k} = -2.2 + 2.5 \cdot f_{t,0,\ell,k}^{0.75} + 1.5 \cdot \left(\frac{f_{m,j,k}}{1.4} - f_{t,0,\ell,k} + 6\right)^{0.65}$$

Design equation

$$f_{m,g,k} = -2.2 + 2.5 \cdot f_{t,0,\ell,k}^{0.80} + 1.5 \cdot \left(rac{f_{m,j,k}}{1.6} - f_{t,0,\ell,k} + 6
ight)^{0.60}$$

<4> Conclusions

A model is now available for detail simulation of hardwood glulam

- A model is now available for detail simulation of hardwood glulam
- It includes features not present in the model used to calibrate the current softwood glulam design equation, such as

- A model is now available for detail simulation of hardwood glulam
- It includes features not present in the model used to calibrate the current softwood glulam design equation, such as
 - variable length of the boards (important, since the finger-joints are weak points)

- A model is now available for detail simulation of hardwood glulam
- It includes features not present in the model used to calibrate the current softwood glulam design equation, such as
 - variable length of the boards (important, since the finger-joints are weak points)
 - softening (fracture energies)

- A model is now available for detail simulation of hardwood glulam
- It includes features not present in the model used to calibrate the current softwood glulam design equation, such as
 - variable length of the boards (important, since the finger-joints are weak points)
 - softening (fracture energies)
 - an increased number of elements over the thickness of each lamination (n=3), which allows for a better behavior under failure

- A model is now available for detail simulation of hardwood glulam
- It includes features not present in the model used to calibrate the current softwood glulam design equation, such as
 - variable length of the boards (important, since the finger-joints are weak points)
 - softening (fracture energies)
 - an increased number of elements over the thickness of each lamination (n=3), which allows for a better behavior under failure
- Although some results do still not correlate satisfactory with experimental data, there is still enough possibilities for improvements (e.g. improved variation of MOE within a lamination)

• The work will be continued with hardwood glulam to find parameters for a rather general design equation

Outlook

- The work will be continued with hardwood glulam to find parameters for a rather general design equation
- To do this, this model will be compared against a wider range of datasets (partly already available)

Outlook

- The work will be continued with hardwood glulam to find parameters for a rather general design equation
- To do this, this model will be compared against a wider range of datasets (partly already available)
- It can be expected that a set of parameters, for at least a specific interval of board densities, will be available within a foreseeable time frame of maximum two years.

Thanks for your attention!

Glueline integrity verification for glulam made of various hardwood species

Maren Hirsch and Simon Aicher

Materials Testing Institute (MPA), University of Stuttgart Department of Timber Constructions

Simon Aicher

Starting position

Simon Aicher

Type ^a	Number of cycles	1	2	3		
Glued laminated timber, Glulam with large finger joints and block glued glulam	Method A	-	5	10		
	Method B	4	8	_		
	Method C	10	_	_		
Glued solid timber with lamination thicknesses from 60 mm up to 85 mm (inclusive)	Method A	-	10	15		
	Method B	8	12	_		
	Method C	15	_	_		
^a For Glued solid timber having lamination thicknesses from 45 mm up to 60 mm linear interpolation applies.						

	Average		Individual values				
Shear strength f_v , in N/mm ²	6	8	<i>f</i> _v ≥11	$4 \leq f_v < 6$	6	<i>f</i> _v ≥10	
Minimum wood failure percentage, in % ^b	90	72	45	100	74	20	
^a For values in between linear interpolation shall be used.							

^b For average values the minimum wood failure percentage shall be: $144 - (9 f_V)$. For the individual values the minimum wood failure percentage for the shear strength $f_V \ge 6,0$ N/mm² shall be: $153,3 - (13,3 f_V)$.

Literature review on bond shear strength (1)

Literature review on bond shear strength (2)

Experimental study on bond shear strength

→ Bond shear tests with industrially produced GLTs made of 4 European hardwood species

Species	Approval	Adhesive	Density
Ash	Swiss comp. rule	PRF	695 ± 12
Beech	(Z-9.1-679)	MUF	742 ± 53
Chestnut	ETA-13/0646	MUF	596 ± 51
Oak	ETA-13/0642	MUF	752 ± 49

Simon Aicher

Experimental study – Test method

University of Stuttgart

Simon Aicher

Test Results

Bond shear strength correlations

University of Stuttgart

Simon Aicher

Bond vs. wood shear strength correlation

$WF - f_{v,b}$ requirements acc. to int. standards

Hardwood shear strength requirements

Test Results - ITT

Test Results - ITT

Test Results - ITT

Test Results - FPC

Test Results - FPC

Test Results - FPC

A hardwood species overarching shear strength and wood fibre failure requirement is possible based on correlated bond and wood shear strength tests and requirements similar yet improved to ANSI A190.1

Thank you for your attention!

Hybrid beech and spruce cross-laminated timber

Zachary Christian

Materials Testing Institute (MPA), University of Stuttgart Department of Timber Constructions

Zachary Christian

Overview

- 1. Cross-laminated timber (CLT)
- 2. Why beech?
- 3. Rolling shear properties of beech boards
- 4. Production of beech-spruce hybrid CLTs
- 5. Testing of beech-spruce hybrid CLTs in the flatwise direction
- 6. Design implications for flatwise loaded slabs
- 7. Testing of beech-spruce hybrid CLTs in the edgewise direction
- 8. Further checks (glueing)
- 9. Initial findings from 5-layer tests / Outlook

1. Cross-laminated timber (CLT)

Currently produced homogeneously, primarily from **softwoods** (spruce/fir)

1a. Advantages:

- Dimensional possibilities
- Dimensional stability
- Decent mechanical properties
- Machinability
- Prefabrication
- Rapid erection
- Environmentally friendly
-

1b. Disadvantages:

- Low rolling shear properties
 in cross-layer
- Reduced stiffness in edgewise direction

2. Why beech?

- Unused beech forest stands
 in Central Europe
- Increased plantation of beech in Europe
- Higher stiffness and strength properties vs. softwoods, and hence also assumingly for rolling shear (even for lower grades, typically only used for thermal purposes)

Zachary Christian

3a. Testing of individual boards

Zachary Christian

semi-quarter

sawn

b/2

3b. Specimen classification

- Quarter-sawn: $60^{\circ} \le \varphi_{\text{mean}} \le 90^{\circ}$,
- Semi-quarter-sawn: $30^{\circ} \le \varphi_{\text{mean}} < 60^{\circ}, \varphi_1 > 0^{\circ},$
- *Flat-sawn*: $0^{\circ} \le \varphi_{\text{mean}} < 30^{\circ}$, $\varphi_1 \le 0^{\circ}$, d > 5 mm,
- Including pith: $\varphi_1 \le 0^\circ$, d ≤ 5 mm

3c. Results – Rolling shear modulus

3c. Results – Rolling shear strength

3. Rolling shear properties of beech boards

3c. Theoretical considerations

4. Production of beech-spruce hybrid CLT

4a. Manufacture of beech-spruce hybrid CLT plates

(One-component Polyurethane + Primer)

RSSB5

5a. Compression shear tests

5b. Flatwise bending shear tests - Setup

5. Testing of beech-spruce hybrid CLT

5b. Flatwise bending shear tests - Failures

5b. Flatwise bending shear tests – Results

6. Design implications – flatwise bending

6a. Deflection

6. Design implications – flatwise bending

6b. Shear stresses

7a. Edgewise bending shear - Test setup

7. Edgewise Tests

7a. Edgewise bending shear - Failure types

Mostly bending (tensile) failures in the spruce layers, typically starting at finger joints within the peak moment area

In one instance, a shear failure of the gross cross section occurred

7. Edgewise Tests

7b. Net cross section – shear tests

7c. Torsional shear

7. Edgewise Tests

7d. Results

Hybrid beech-spruce CLT:			Homogeneous spruce CLT:	
Bending streng Bending shear:	gth f_{m,05} [N/mm2 f _{m,net,05} f _{m,gross,05}	2] 33.5 24.3	18.5-29.0	
Shear strength Bending shear: Net cross-sect.: Torsional shear:	s $f_{v,05}$ [N/mm ²] $f_{v,gross,05}$ $f_{v,net,comp,05}$ $f_{v,tor,05}$	3.8* 12.15 2.33	4.0 6.7 2.4 – 2.8	
Shear stiffness Bending shear:	G ₀₉₀ [N/mm ²] G ₀₉₀	509	220 - 310	

8. Further tests

8a. Block shear tests with hybrid CLT

Requirements according to EN 16351 fulfilled

[▶] characteristic shear strength ≥ 1.25 N/mm² [▶] minimal shear strength ≥ 1.0 N/mm²

8. Further tests

8b. Delamination tests

High swelling/shrinkage coefficients of beech leads to high delaminations, nevertheless the requirements according to EN 16351 have been fulfilled!

9. Initial findings for 5-layer hybrid CLT/ Outlook

- Rolling shear properties just as good as the tests with 3-layered elements
- Edgewise shear stiffness (effective) increased to 740 N/mm²

 \rightarrow Enormous potential for increasing height of CLT tall buildings!!!

Industrial application - EAD in preparation

Thank you for your attention!

Zachary Christian

Materials Testing Institute (MPA), University of Stuttgart Department of Timber Constuctions

5. Testing of beech-spruce hybrid CLT

5b. Flatwise bending shear tests – Calculation method

(from strain gauge measurements)

$$G_{r,2} = \frac{\tau_{r,2}}{\gamma_{r,2}}$$
$$\tau_{r,2} = \frac{V \cdot \gamma \cdot t_{1,3} \cdot (t_{1,3} + t_2)}{2I \cdot \eta}$$
$$\approx \frac{V \cdot t_{1,3} \cdot (t_{1,3} + t_2)}{2I}$$
simplification:

$$\gamma = \eta \approx 1$$

$$E_{0,1,3} = E_{0,\text{strain}} = \frac{\sigma_{\text{m},1,3}\left(\pm\frac{h}{2}\right)}{\varepsilon_{1,3}\left(\pm\frac{h}{2}\right)}$$

$$\sigma_{\text{m},1,3} = \pm\frac{M}{l_{\text{eff}}} \left[\pm\frac{t_{1,3}}{2}\pm\gamma\cdot\left(\frac{t_{1,3}+t_2}{2}\right)\right]$$

$$I_{\text{eff}} = b\cdot\left[\sum_{1,3}\frac{t_{1,3}^3}{12}+\gamma\cdot\sum_{1,3}\left(t_{1,3}\cdot\left(\frac{t_{1,3}+t_2}{2}\right)^2\right)\right]$$

$$\gamma = \frac{1}{1+k}$$

$$k = \frac{\pi^2(E_{0,1}\cdot t_1 + E_{0,3}\cdot t_3)/2}{2l^2\cdot G_{\text{r},2}/t_2} = \frac{\pi^2\cdot E_{0,1,3}\cdot t_{1,3}}{2l^2\cdot G_{\text{r},2}/t_2}$$

5. Testing of beech-spruce hybrid CLT

5b. Flatwise bending shear tests – Calculation method

(from deflection measurements)

$$w_{\text{global}} = w_{\text{M}}(E_{0,1,3}, I) + w_{\text{V}}((GA)_{\text{eff}})$$

$$(GA)_{\text{eff}} = b \cdot d^2 \cdot \left(\frac{t_{1,3}}{G_{1,3}} + \frac{t_2}{G_{r,2}}\right)^{-1}$$

$$G_{\rm r,2} = t_2 \cdot \left[\frac{b \cdot d^2}{(GA)_{\rm eff}} - \frac{t_{1,3}}{E_{0,1,3}/\eta_{\rm EG}}\right]^{-1}$$

$$\eta_{EG} = \frac{E_0}{G} = 16$$