Effect of moisture to the strength and deformations of timber structures

Ranta-Maunus, Alpo

- Moisture content in wood
- Strength at different moisture contents
- Creep and moisture variation
- Strength reduction due to moisture gradients

Relative humidity in Finland

outdoors

indoors

2

Copyright © VTT

Equilibrium moisture content of wood

Moisture content variation in southern Sweden

Recommended MC of wood for interior use

Effect of moisture content change to mechanical properties of softwoods (%/%) between 8 and 20% MC.

Values of clear wood and round timber are average effects, values of sawn timber are for characteristic values

Property	Clear wood	Round timber	Sawn timber (EN 384)		
Compression strength	5	5	3		
Bending strength	4	1	0		
Tension strength (//)	2,5		0		
Tension strength (\perp)	2				
Shear strength	3				
Impact bending strength	(//) 0,5				
Modulus of elasticity (//)	1,5		2		

American lumber strength

Duration of load effect

Copyright © VTT

Creep of sawn timber and glulam in heated and unheated room

Effect of treatment on creep in sheltered environment

Duration of load experiments with curved beams

	painted				
RH cycle (%)	40< > 85	40< > 85	55< > 90	55< > 90	
Width (mm)	90	90	90	140	
Time to failure (days)	13	20	28	17	
<i>k</i> _{DOL}	0.76	0.55	0.60	0.66	

 k_{DOL} at constant humidity = 0.8 for 2 to 4 week load duration

Table 4.1 Comparison of DOL- factors obtained in cyclic humidity tests (Aicher et al 1998)

	VTT S2 painted curved beams	VTT S1&3 curved beams	AIR S2 curved beams	AIR S6 curved beams	FMPA small tensile	FMPA small tensile	FMPA large tensile	FMPA large tensile
Conditioning RH (%)	70	70	75	75	65	65	65	65
RH cycle (%)	40<->85	40<->85	55<->90	55<->90	55<->90	natural	55<->90	natural
Width (mm)	90	90	90	140	90	90	140	140
Time to failure (days)	13	20	28	17	18	2.6	19	25
k _{DOL}	0.76	0.55	0.60	0.66	0.45	0.60	0.50	0.64

Moisture is changing in wood

Stresses in wood perpendicular to grain

Distance from surface [mm]

-0.5

Copyright © VTT

Calculated equivalent (mean) stresses for combined moisture and mechanical action for 90 mm thick glulam

Mean stress from external load = 0.20 MPa

RH cycleEquivalent stress65 -> 90 %0.52 MPa75 -> 90 %0.40 MPa55 <-> 90 %0.45 MPa40 <-> 85 %0.35 MPa40 <-> 85 %0.25 MPa surface coated

Figure 6.1 Calculated Weibull stresses in 140 mm wide test beams when pre-test conditioning moisture content is the same as during the test or 3% EMC lower or higher (Fig. 57, Gowda et al 1998)

16

Conclusion: Moisture gradient is an action on structure

18

Consideration of moisture gradients in structural design

- It is suggested that transient moisture conditions resulting in tensile stress perpendicular to grain should be considered as a load case instead of strength reducing factor
- The design equation for multiple loads is expressed in design codes in principle as follows:

$$\gamma_G \sigma_G + \gamma_Q (\sigma_{Q1} + \psi \sigma_{Q2}) \leq \frac{k_{\text{mod}} f}{\gamma_M}$$

