

Reliability Based Code Calibration

M. H. Faber, ETH Zurich, Switzerland J.D. Sorensen, AAU, Aalborg, Denmark.

Overview of Presentation

- Design Codes and Code Calibration in the Past
- Principles of Structural Reliability
- Reliability and Partial Safety Factors
- The Code Calibration Decision Problem
- Optimality and Target Reliabilities
- A Practical Code Calibration Procedure
- Conclusions and Future Challenges

Structural safety is a matter to be considered throughout all phases of the life of a structure

The risk potential associated with a given structure may be subdivided as

Structural reliability is ensured by means of selecting

appropriate dimensions appropriate control

Accepted risks is a matter of choise – based on cost benefit considerations

• "Normal structures" are designed according to structural design codes

• Exceptional structures is often associated with structures of

"Extreme Dimensions"

Great Belt Bridge under Construction

Concept drawing of the Troll platform

$f_{\mathbf{x}}(\mathbf{x})$ $p(\mathbf{x}, \mathbf{t}) = 0$

Design Codes and Code Calibration in the Past

or associated with structures filfilling

"New and Innovative Purposes"

Illustrations of the ARIANE 5 rocket

Concept drawing of Floating Production, Storage and Offloading unit JCSS Workshop on Reliability Based Code Calibration, March 21-22, 2002, Zurich, Switzerland.

Principles of Structural Reliability

• Structural performance is subject to uncertainty due to

- Natural variability in material properties and loads or load effects
- Statistical uncertainties due to lack of or insufficient data
- Model uncertainties due to idealisations and lack of understanding in the physical modelling of the structural performance

 $f_{\mathbf{X}}(\mathbf{x})$

Principles of Structural Reliability

• The fundamental case

$$P_F = P(R \le S) = P(R - S \le 0) = \int_{-\infty}^{\infty} F_R(x) f_S(x) dx$$

• Normal distributed safety margin

$$P_F = P(R - S \le 0) = P(M \le 0)$$

$$\mu_{M} = \mu_{R} - \mu_{S}$$

$$\sigma_{M} = \sqrt{\sigma_{R}^{2} + \sigma_{S}^{2}} \qquad \mu_{M} / \sigma_{M} = \beta$$

$$P_{F} = \Phi\left(\frac{0 - \mu_{M}}{\sigma_{M}}\right) = \Phi(-\beta)$$

Principles of Structural Reliability

- The probability of failure in regard to
 - Ultimate collapse
 - Loss of serviceability
 - Excessive deterioration

The Code Calibration Decision Problem

 The code calibration problem can be seen as a decision problem with the objective to maximize the life-cycle benefit obtained from the structures by "calibrating" (adjusting) the partial safety factors

$$\max_{\gamma} \quad W(\gamma) = \sum_{j=1}^{L} w_j \Big[B_j - C_{Ij}(\gamma) - C_{Rj}(\gamma) - C_{Fj} P_{Fj}(\gamma) \Big]$$

s.t. $\gamma_i^l \le \gamma_i \le \gamma_i^u$, $i = 1, ..., m$

The "optimal" design is determined from the design equations

$$\min_{\gamma} \quad C_{lj}(\mathbf{z}) \qquad \qquad G_j(\mathbf{x}_c, \mathbf{p}_j, \mathbf{z}, \gamma) \ge 0$$
s.t.
$$G_j(\mathbf{x}^c, \mathbf{p}_j, \mathbf{z}, \gamma) \ge 0$$

$$\mathbf{z}_i^l \le \mathbf{z}_i \le \mathbf{z}_i^u \quad , i = 1, ..., N$$

Optimality and Target Reliabilities

• Acceptance criteria may be established on the basis of cost benefit considerations

• Optimality may be determined from

$$\frac{\partial E[B]}{\partial C_D} = -1 - (I + C_F) \cdot \frac{\partial P_F(C_D)}{\partial C_D} = 0$$

Optimality and Target Reliabilities

• Target reliabilities for Ultimate Limit State verification

Relative cost of safety measure	Minor consequences of failure	Moderate consequences of failure	Large consequences
High	$\beta = 3.1 (P_F \approx 10^{-3})$	$\beta = 3.3 \ (P_F \approx 5 \ 10^{-4})$	$\beta = 3.7 (P_F \approx 10^{-4})$
Normal	$\beta = 3.7 (P_F \approx 10^{-4})$	$\beta = 4.2 (P_F \approx 10^{-5})$	$\beta = 4.4 (P_F \approx 5 \ 10^{-5})$
Low	$\beta = 4.2 (P_F \approx 10^{-5})$	$\beta = 4.4 (P_F \approx 10^{-5})$	$\beta = 4.7 (P_F \approx 10^{-6})$

• Target reliabilities for Serviceability Limit State verification

Relative cost of	Target index	
safety measure	(irreversible SLS)	
High	$\beta = 1.3 (P_F \approx 10^{-1})$	
Normal	$\beta = 1.7 (P_F \approx 5 \ 10^{-2})$	
Low	$\beta = 2.3 (P_F \approx 10^{-2})$	

A Practical Code Calibration Procedure

- A seven step approach
- **1.** Definition of the scope of the code
 - Class of structures and type of failure modes

2. Definition of the code objective

- Achieve target reliability/probability

3. Definition of code format

- how many partial safety factors and load combination factors to be used
- should load partial safety factors be material independent
- should material partial safety factors be load type independent
- how to use the partial safety factors in the design equations
- rules for load combinations

A Practical Code Calibration Procedure

- A seven step approach
 - **4.** Identification of typical failure modes and of stochastic model
 - relevant failure modes are identified and formulated as limit state functions/design equations
 - appropriate probabilistic models are formulated for uncertain variables
 - **5.** Definition of a measure of closeness
 - the objective function for the calibration procedure is formulated e.g.

$$\min_{\gamma} W(\gamma) = \sum_{j=1}^{L} w_j \left(\beta_j(\gamma) - \beta_t \right)^2 \qquad \qquad \min_{\gamma} W'(\gamma) = \sum_{j=1}^{L} w_j \left(P_{Fj}(\gamma) - P_F^t \right)^2$$

A Practical Code Calibration Procedure

• A seven step approach

6. Determination of the optimal partial safety factors for the chosen code format

min
$$C(\mathbf{z})$$

s.t. $c_i(\mathbf{x}_c, \mathbf{p}_j, \mathbf{z}, \gamma) = 0$, $i = 1, ..., m_e$
 $c_i(\mathbf{x}_c, \mathbf{p}_j, \mathbf{z}, \gamma) \ge 0$, $i = m_e + 1, ..., m$
 $\mathbf{z}_i^1 \le \mathbf{z}_i \le \mathbf{z}_i^u$, $i = 1, ..., N$

7. Verification
- incorporating experience of previous codes and practical aspects

Conclusions and remarks

- Simplified and straight forward formulations exist for the calibration of deterministic LRFD safety formats
- Traditionally the safety formats have only allowed for a rather limited differentiation in regard to failure consequences
 - the codes have origin in "one man one structure" situations
- In the modern society the failure of one structure may be associated with consequences reaching far beyond the "interest" of the individual
- More work is needed to include more realistically the consequences of failure from a societal point of view – including the situations
 - one extreme event affecting one structure (of extreme importance)
 - one extreme event affecting many structures (of moderate importance)

Thanks for your attention !