

Load bearing capacity of roof trusses

John Dalsgaard Sørensen *Aalborg University, Aalborg, Denmark*

- Stochastic model for strength of timber beam
- Load bearing capacity of roof truss
- Statistical characteristics
- Reliability aspects

• Bending strength of timber beam – model 1

Length:

- weak sections : a length = 0.15 m
- strong sections : L_j length of cross-section: Gamma (0.494 m, 0.310 m)
 L₁, L₂, L₃,...: independent

Bending strength:

- weak sections: f_{ij} = bending strength of weak cross-section *j* in beam *I*
- strengths in different beams : independent
- strong sections: bending strengths of all strong sections = strength of the strongest weak section

Modulus of elasticity:

- $E_{jj} = c f_{ij}$, $c = 3.8 \ 10^3$
- Correlation with bending strength: correlation coefficient = 0.8

Bending strength:

- Lognormal distributed: $f_{ij} = \tau_i \epsilon_{ij}$ COV = 0.25
 - τ_i = mean strength of beam no *i*: Lognormal
 - ε_{ij} = difference between mean strength of beam *i* and strength in cross-section *j*: Lognormal
- 40% and 60% of the variance of f_{ij} are related to τ_i and ε_{ij}

Compression strength:

- Lognormal distributed COV = 0.15
- Correlation with bending strengths: correlation coeff. =0.9 **Tension strength:**
- Lognormal distributed COV = 0.30
- Correlation with bending strengths: correlation coeff. =0.8

Characteristic values (MPa) and coefficient of variation (COV):

	K14	K18	K24	K30	COV
Bending	14	18	24	30	0.25
Compression	12	15	20	26	0.15
Tension	8	10	16	20	0.30
Modulus of elasticity					0.13

Stochastic model: calibrated to standard test specimens

• Bending strength of timber beam – model 2

Example 1 – roof truss

Load: permanent + snow

Example 1 – roof truss

Stochastic model 1: L = 12.45 m:

Load:	permanent		snow		permanent + snow	
	COV	P _{0.05}	COV	P _{0.05}	COV	P _{0.05}
Non-parametric	0.13	2.51	0.12	2.80	0.13	2.33
LogNormal	0.17	2.51	0.14	2.79	0.17	2.32
Weibull-2p	0.10	2.53	0.09	2.81	0.11	2.33
P _{0.05}		2.47		2.88		2.08

Stochastic model 1: L = 8.85 m:

Load:	permanent		snow		permanent + snow	
	COV	P _{0.05}	COV	P _{0.05}	COV	P _{0.05}
Non-parametric	0.12	3.23	0.11	2.89	0.13	2.41
LogNormal	0.17	3.22	0.14	2.89	0.16	2.40
Weibull-2p	0.10	3.25	0.09	2.90	0.10	2.42
P _{0.05}		3.17		2.98		2.17

Example 1 – roof truss

Lognormal

Weibull

Example 1 - roof trussStochastic model 1: L = 8.85 m:

Load:	permanent		snow		permanent + snow	
	COV	P _{0.05}	COV	$P_{0.05}$	COV	P _{0.05}
Non-parametric	0.12	3.23	0.11	2.89	0.13	2.41
LogNormal	0.17	3.22	0.14	2.89	0.16	2.40
Weibull-2p	0.10	3.25	0.09	2.90	0.10	2.42
P _{0.05}		3.17		2.98		2.17

Stochastic model 2: L = 8.85 m:

Load:	permanent		snow		permanent + snow	
	COV	P _{0.05}	COV	$P_{0.05}$	COV	P _{0.05}
Non-parametric	0.12	3.07	0.11	2.89	0.13	2.31
LogNormal	0.15	3.05	0.14	2.89	0.16	2.30
Weibull-2p	0.10	3.08	0.09	2.90	0.10	2.32
P _{0.05}		3.17		2.98	~	2.17

Example 2 – collar tie roof truss

Load: permanent + snow + imposed

Example 2 – collar tie roof truss

Load:	Perma	nent	Imposed		Snow load		Imposed +		Snow	+ im-		
	load		load				permane		permanent		posed	+ per-
							load		manent	load		
	COV	P _{0.05}	COV	P _{0.05}	COV	$P_{0.05}$	COV	$P_{0.05}$	COV	P _{0.05}		
Non-par.	0.09	3.19	0.16	5.70	0.13	9.97	0.18	4.69	0.15	7.87		
LogNormal	0.13	3.17	0.18	5.67	0.16	9.87	0.21	4.66	0.20	7.77		
Weibull-2p	0.08	3.19	0.11	5.72	0.10	9.94	0.13	4.70	0.13	7.84		
P _{0.05}		2.99		5.55		9.80		3.65		6.14		

Reliability aspects

Limit state function: $g = zRX_R - ((1-\alpha)G + \alpha Q)$

Variable	Distribution	Expected value	COV	Quantile value
	type			
Permanent load	N	1	0.10	50 %
Variable load	G	1	0.40	98 %
(environmental load)				
Variable last	G	1	0.20 -	98 %
(imposed load)				
Strength	LN	1	VR	5 %
Model uncertainty	Ν	1	0.05	50 %

Danish code: VR = 20% for structural timber

Reliability aspects

Design equations:
$$z = \max(z_1, z_3)$$

LC 2.1: $z_1 R_c / \gamma_R - ((1 - \alpha) \gamma_{G_1} G_c + \alpha \gamma_{Q_1} Q_c) = 0$
LC 2.3: $z_3 R_c / \gamma_R - ((1 - \alpha) \gamma_{G_3} G_c + \alpha \gamma_{Q_3} Q_c) = 0$

1	Partial safety factor			
	LC 2.1	LC 2.3		
Permanent load	$\gamma_{G_1} = 1.0$	$\gamma_{G_3} = 1.15$		
Variable load (environmental load)	$\gamma_{Q_1} = 1.5$	$\gamma_{Q_3} = 1.0$.		
Variable last (imposed load)	$\gamma_{Q_1} = 1.3$	$\gamma_{\mathcal{Q}_3} = 1.0$		
strength		$\gamma_R = \gamma_2$		

Danish code: $\gamma_R = 1.65$ for structural timber

Reliability aspects – reliability index

Reliability aspectspartial factor for strength

Summary

- Stochastic model for strength of timber beams
- Load-bearing capacity: COV is approximately $15\% \rightarrow$ system factor = 1.1
- Compared to the DK code based values: characteristic values are at least 10% higher \rightarrow system factor = 1.1
- System factor = 1.2 for design load bearing capacity