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Abstract

This work presents a procedure for finding the reliability-based optimum design of cable stayed bridges. The
minimization problem is stated as the minimization of stresses, displacements, reliability and bridge cost. A finite-
element approach is used for structural analysis. It includes a direct analytic sensitivity analysis module, which provides
the structural behaviour responses to changes in the design variables. An equivalent multicriteria approach is used to
solve the non-differentiable, non-linear optimization problem, turning the original problem into the sequential
minimization of unconstrained convex scalar functions, from which a Pareto optimum is obtained. Examples are given
illustrating the procedure.
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1. Introduction

The optimization of cable-stayed bridges can be stated as that of the minimization of structural cost or volume, and the
maximum stresses throughout the structure. Additional objectives are aimed at the deflections or displacements and to
guarantee that the design variables are at least specified minimum values. The work started with the shape and sizing
optimization by using a 2D finite-element model for the analysis. The problem was extended to three-dimensional
analysis and the consideration of erection stages under static loading (Negrdo and Simdes, 1997). Seismic effects were
considered in the optimization both by a modal-spectral approach and a time-history based procedure (Sim&es and
Negrdo, 1999). In most of the previous studies, a grid solution was adopted for modelling the deck, with stiffening
girders supporting transverse beams, although box-girder sections were employed (Negrdo and Simdes, 1999).
Prestressing design variables were also considered for the problems of optimal correction of cable forces during
erection. Deterministic Optimization enhanced by reliability performance and formulated within the probabilistic
framework is called reliability-based optimum design. These are considered important ingredients in the design of
advanced structural systems. Wider applications still exhibit limitations mainly attributed to the deeply nested
architecture of this procedures involving analysis with finite elements, reliability analysis, sensitivity analysis and
optimization.

The behaviour of complex structures is often analysed by means of Finite Element Analysis (FEA). Stresses and
deformations of the structure can be computed given the (deterministic) parameters of loads, geometry and material
behaviour. Some structural codes specify a maximum probability of failure within a given reference period (lifetime of
the structure). This probability of failure is ideally translated into partial safety factors and combination factors by
which variables like strength and load have to be divided or multiplied to find the so-called design values. These design
values are to be used as input for a Finite Element Analysis. The outcome of the calculations is compared with the limit
states (for example collapse or maximum deformation). The structure is supposed to have met the reliability
requirements when the limit states are not exceeded. Reality is different. First of all the (code type) level | method using
partial safety factors makes it only plausible that the reliability requirements are met for average structures. Second
aspect is that safety factors are often based on experience only. A link with the required reliability on a theoretical basis
often does not exist. Third aspect is the system behaviour of structures. The safety factors are often derived for
components of the structure like girders and columns. A structure as a whole behaves like a system of these
components. As a result, depending on the kind of system, the structure can be more or less reliable than its
components. The advantage of the code type level | method (using partial safety factors out of codes) is that, the limit
states are to be checked (by means of an FEA) for only a relatively small number of combinations of variables. A
disadvantage is the lack of accuracy. A code type level | method uses partial safety factors which lead to sufficient
reliability for average components of structures. These problems can be overcome by using more sophisticated
reliability methods such as level 11 (FORM) and level Il (Monte Carlo) reliability methods. The problem with these
methods is the considerable computational effort when used in combination with FEA. The combination of Directional
Sampling and a Response Surface method is a kind of importance directional sampling using a smaller number of limit
state evaluations. The improvement to the standard directional sampling procedure lies in the use of FEA for the
important directions and a response surface for less important directions. In practise this means that, after the response
surface is constructed, only few FEA computations have to be performed.

In this work first order reliability methods were used and the sensitivity information was obtained analytically. In a
forthcoming paper the advanced simulation method combined with the response surface method will be proposed.



2. Structural Analysis

The finite element based open code MODULEF was used as the basic tool for structural analysis, because code
availability was a fundamental requirement for further developments. Out of the several element types included in the
element library of the programme, only the FE required for two- and three-dimensional models of cable-stayed bridges
were retained and adapted to specific needs. These were 2D and 3D bar and beam (Euler-Bernoulli formulation)
elements and 4- and 8-noded serendipity plate-membrane (Reissner-Mindlin formulation) elements.

3. Design Variables

The structural response of a cable-stayed bridge is conditioned by a large number of parameters, concerning cross-
sectional shapes and dimensions, overall bridge geometry, applied prestressing forces, deck-to-pylon connections, etc.
Some of them play only a limited role on the bridge behaviour while others, such as the cable pattern and prestressing
forces, are of major importance for both the safety and serviceability purposes. Three types of design variables were
considered: sizing, shape and mechanical. Sizing design variables are cross-sectional characteristics of bar, beam and
plate elements, such as web height, flange width, plate thickness, etc. Changes of such variables do not imply the need
for remeshing. Shape design variables produce geometry changes that require nodal co-ordinates update or even
complete remeshing. Other design variables can be characterized as hybrid, because they define both the box-girder
cross-section shape and the deck geometry, requiring co-ordinates updating only. Finally, the fixed-end prestressing
force is a mechanical design variable not related to any geometric quantity. The currently available types are shown in
Figure 1.
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Fig. 1 - Sizing and hybrid design variables Fig. 2 — Shape and mechanical design variables

All these types play complementary roles in the process of design optimization. Sizing design variables directly provide
for cost/volume decrease. Shape and mechanical design variables have a neglectable direct relation to structural cost but
allow for better stress distributions, which in turn lead to further decreases in sizing variables. Prestressing force design
variables are essential for achieving acceptable solutions when deflections are considered in the dead load condition.
The final behaviour of cable-stayed bridges is deeply related to the erection. Among the various methods used for
bridge erection, cantilevering method has become the most popular, due to its suitability for building large spans under
strict clearance demands. For the solution of this problem it was assumed that the chronological sequence,
corresponding to the erection stage set, might be thought of as a set of independent sub-structures, each corresponding
to an erection stage. This is done automatically by the mesh and variable linking generator. The number of RHS will be
usually that of the final structure, due to load combination involving wind, earthquake and live load, acting in the
several positions of the span.

4. Reliability-based Optimization
A failure event may be described by a functional relation, the limit state function in the following way

F={g(xk0} @

The probability of failure may be determined by the following integral:

Where f,(X) is the joint probability density function of the random variables X. This integral is however non trivial to
solve. Various methods for the solution have been proposed including numerical integration techniques, Monte Carlo
simulation and asymptotic Laplace expansions. Numerical integration techniques become inefficient for increasing
dimensions of the vector X. Monte Carlo simulation techniques may be used, but in the following the focus will be on
the first order second moment methods (FORM) which are consistent with the solutions obtained by asymptotic Laplace
integral expansions. In the case the limit state function g(x) is a linear function of the normally distributed basic random
variables X the probability of failure can be written in terms of the linear safety margin M as:

P-=P{g(x)}0}=P(M<0) )
which reduces to the evaluation of the standard normal distribution function
Pr=d(-H )

Where [3 is the reliability index given as
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The reliability index has the geometrical interpretation as the smallest distance from the line (or the hyperplane)
forming the boundary between the safe domain and the failure domain. The evaluation of the probability of failure
reduces to simple evaluations in terms of mean values and standard deviations of the basic random variables.
When the limit state function is not linear in the random variables X, Hasofer and Lind suggested to perform the
linearization of the limit state function in the design point of the failure surface represented in normalized space U.

U =( X - ki) / Oxi (5)
As one does not know the design point in advance, this has to be found iteratively in a number of different ways.

Provided that the limit state function is differentiable, the following simple iteration scheme may be followed:
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Which will provide the design point u as well as the reliability index 3.
The reliability assessment requires an enumeration of the reliability indices associated with limit state functions to
evaluate the structural system probability of failure. Collapse modes are usually correlated through loading and
resistances, so an exact evaluation of the probability is impractical, or even impossible to perform numerically. For this
reason, several investigators considered this problem by either finding bounds for pr or approximate solutions. In
general, the admissible failure probability for structural design is very low. A first estimate of P; can be found through
well-known first-order bounds proposed by Cornell:
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The lower bound, which represents the probability of occurrence of the most critical mode (dominant mode) is obtained
by assuming the mode failure events Z, to be perfectly dependent, and the upper bound is derived by assuming
independence between mode failure events. Hence, approximation by Cornell’s first-order upper bound is very
conservative because it neglects the high correlation between failure modes. Improved bounds can be obtained by
taking into account the probabilities of joint failure events such as P(Fi n F;) which means the probability that both
events F; and F; will simultaneously occur. The resulting closed-form solutions for the lower and upper bounds are as
follows:
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The above bounds can be further approximated using Ditlevsen’s method of conditional bounding to find the
probabilities of the joint events. This is accomplished by using a Gaussian distribution space in which it is always
possible to determine three numbersp;, B; and the correlation coefficient p;; for each pair of collapse modes F; and F;.
Improved bounds can also be obtained by using Vanmarcke’s concept of failure mode decomposition which takes into
account the conditional probability that the (i — ) mode survives given that mode i occurs. By assuming that the
probability of occurrence of the ith mode P(F;) = @(B;) depends on (3; only, the conditional probability P(S;00F;) is
evaluated in terms of the safety indices 3; and ; and the coefficient of correlation p;; between the failure modes F; and
F;. A different approximate method which avoids calculating conditional probabilities resulting from conditions leading
to failure via pairs of failure modes is the PNET. This method also requires the evaluation of the coefficients of
correlation between any two failure modes i and j and is based on the notion of demarcating correlation coefficient g,
assuming those failure modes with high correlation (0;; = po) to be perfectly correlated and those with low correlation
(pij < po) to be statistically independent. This method is not very convenient because the solutions will be heavily
dependent on the assumed demarcating coefficient py. A discrete reliability sensitivity analysis is derived and used in
the optimization algorithm

5. Sensitivity analysis

The analytic direct method was adopted for the purpose of sensitivity analysis, given the availability of the code, the
discrete structural pattern and the large number of constraints under control. For ordinary linear statics problems,
derivatives of kinematic constraints (displacements) are provided by solving a structural system with pseudo-loading.
The stress derivatives are accurately determined from the chain derivation of the finite element stress matrix:
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The first term of right-hand side may be directly computed during the computation of element contribution for the
global system, on the condition that derivative expressions are pre-programmed and called on that stage. The second
term on the right-hand side is somewhat more difficult to compute because an explicit relation between displacement
vector and design variable set does not exist. Pre-programming and storing the stiffness matrix and right-hand side
derivatives in the same way as described for the stress matrix, the displacement derivatives may be computed by the
solution of N pseudo-load right-hand sides. The stress derivatives are then computed in a straightforward way. The
explicit form of matrix derivatives depends on the type of element. For 2D and 3D bar and beam elements their
calculation is a straightforward task. For plate-membrane elements, the differentiation of the whole finite element
formulation is required.

6. Optimization

Pareto’s economic principle is gaining increasing acceptance to multi-objective optimization problems. In minimization
problems a solution vector is said to be Pareto optimal if no other feasible vector exists that could decrease one
objective function without increasing at least another one. The optimum vector usually exists in practical problems and
is not unique. In regard to reliability based design several alternative formulations exist. A comprehensive review can
be found in 4. The material cost together with maximum probability of failure and measures of the structural
performance and imposed by manufacturing and technical considerations are the objectives to be minimized. Size,
shape, material configuration and loading parameters may be allowed to vary during the optimization process. Bounds
must be set for average cross-sectional and geometric design variables variables in order to achieve executable solutions
and required aesthetic characteristics. The overall objective of cable-stayed bridges design is to achieve an economic
and yet safe solution. In this study it is not intended to include all factors influencing the design economics. One of the
factors conventionally adopted is the cost of material used. A second set of goals arises from the requirement that the
stresses should be as small as possible. The optimization method requires that all these goals should be cast in a
normalized form. Another set of goals arises from the imposition of lower and upper limits on the sizing variables,
namely minimum cable cross sections to prevent topology changes and exequible dimensions for the stiffness girder
and pylons cross sections: Similar bounds must be considered for the geometric design variables. Additional bounds are
set when geometric design variables are considered, to ensure that no geometry violation occurs when these design
variables are updated. Additional goals may be established in order to ensure the desired geometric requirements during
the optimization process (mesh discretization, ratios of variation of cable spacing on deck and pylons, etc). For these the
chosen approach was to initially supply all the necessary information, by means of a geometry coefficients set
describing such conditions.

The objective is to minimize all of these objectives over sizing and geometry variables X. This problem is discontinuous
and non-differentiable and is therefore hard to solve. However, by using an entropy-based approach, Templeman has
shown that its solution is equivalent to that of an unconstrained convex scalar function, depending only on one control
parameter, which may be solved by conventional quasi-Newton methods. This parameter must be steadily increased
through the optimization process. The scalar function is very similar to that of Kreisselmeyer-Stainhauser, derived for
control problems:
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Problem (13) is unconstrained and differentiable which, in theory, gives a wide choice of possible numerical solution
methods. However, since the goal functions gj(x,z) do not have explicit algebraic form in most cases, the strategy
adopted was to solve (13) by means of an iterative sequence of explicit approximation models. An explicit
approximation can be formulated by taking Taylor series expansions of all the goal functions g;(x,z) truncated after the
linear term. This gives:
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where N and M are respectively the number of sizing plus geometric design variables and the number of goal
functions.g,; and 0 gy/ 0 x; are the goals and their derivatives evaluated for the current design variable vector (x,,Z,), at
which the Taylor series expansion is made.

Solving (14) for particular numerical values of g, forms only one iteration of the complete solution of problem (13).
The solution vector (x;,2;) of such an iteration represents a new design which must be analysed and gives new values
for gyj, 0910 x; and (x4,24), to replace those corresponding to (X,,Z,) in (14). Iterations continue until changes in the

design variables become small. During these iterations the control parameter p must not be decreased to ensure that a
multiobjective solution is found.

7. Numerical Example

In order to illustrate the possibilities of the method, a numeric example is presented in this section. The starting trial
design is as shown in Figure 3 and corresponds to an asymmetric two-span cable-stayed footbridge.
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Figure 3 — Geometry of the bridge model — Starting trial design

28 design variables are considered of both sizing, shape and mechanical types. The former are those shown in Figure 4
and concern to cross-sectional dimensions for glulam beams and steel pylons and cross-sectional areas for the stays.
Shape design variables are as illustrated in Figure 2, while mechanical design variables are the fixed-end prestressing
forces and Young modulus for glued laminated timber. Starting values of shape design variables are given in Table 1
and their meaning is drawn from Figures 2 and 3.
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Figure 4 — Starting values of sizing design variables for the deck and pylons

Stiffening girders are made up of strength graded GL24h glulam. The mechanical characteristics are set according to
EN1194 [7]. The fact that compressive strength is higher than tensile strength also favours the use of this material in
cable-stayed bridges, because compression is the dominating state of stress in this structural system. A fixed width of
150mm is considered, while the cross section depth is assigned to design variable #1. Given the comparatively thin
depth of the laminations, it is assumed to be possible a continuous variation of this parameter. The same assumption is
made for Young modulus, which is assigned to design variable #2. If the optimum design leads to a value of Eg mean,g NOt
corresponding to one of the glulam grades of prEN1194, an enumerative procedure may be used for the closest grades.
This was not the case in the examples presented here, because the algorithm gives an optimum solution made up of



GL20h. The sensitivity analysis concerning this type of design variable must account for the change in parameters that
direct or indirectly affect the structural cost: the characteristic strength, the mass and the glulam cost itself. If the
improvement of strength, associated to a variation of the Young modulus, is large enough to compensate the increase of
structural self-weight and of more expensive glulam beams, the algorithm will lead to a superior quality material. For
this relation to be properly accounted in the process, approximate relations between Young modulus and compressive
strength, mass and cost were assumed. These are as follows:

fc,O,g,k =215 EO,mean,g (15)
Pgk =0.16 + 0.02 Egmeang (16)
€ =€50 (EO,mean,g '1) (17)

with feo g expressed in MPa, Eqmeang in Gpa, gy in tons and the cost in Euro€.

Relations (15) and (16) lead to values slightly different from those specified in prEN1194, but the error is not large
enough to change the trend towards the decrease or increase of the Young modulus. Equation (17) is an estimate which
can be rewritten for a specific country and market conditions. The essential goal of this study is to find automatically a
reliable solution in agreement with the available data.

A volume unit cost of €10,000 was prescribed for mild steel and €25,000 for cable steel.

Pylons are assumed to be made up with welded steel asymmetric I-shaped cross sections, the web plan being parallel to
the longitudinal plan of the bridge. A fictitious lattice girder simulates the horizontal stiffness provided by the deck
surface and required for transverse or eccentric loading.

Al stays are assigned a starting cross-sectional area of 3cm? (design variables 15-18) and a fixed-end prestressing force
of 50KN (design variables 19-22). It must be remarked that these are the tensile forces necessary to connect the stays to
the anchorage devices in the undeflected structure and not those remaining in the cables after removal of the tensioning
equipment, which are smaller due to the cable deformation recovery.

An uniform live load acting on the deck, with the characteristic value of 4KN/m? was considered as the leading
action. It was considered it to act throughout the whole span or in either left or right span only. For the sake of
simplicity, each of these live load distributions was assumed to be an independent event. Structural self-weight and a
uniform load of 0.5KN/m? on deck were prescribed as dead loads. The EC1 [8] rules were used to define three load
combinations for the purpose of ultimate strength limit state. These correspond to live load acting throughout the whole
span or in each side ot the pylon only. Coefficients of variation (COV) for the dead and live loads were assigned the
values of 0,10 and 0,20, respectively. The corresponding safety factors for ultimate limit state design were 1,35 and
1,50. Given its irrelevancy for the issues focused in this paper, no strength reducing factor k. [9] was considered.
Prescriptions of ENV1995-2 (EC5-Part 2: Bridges) [10] constraining the values of horizontal and vertical frequencies of
the bridge were not included as well, because they are currently under implementation in the code. The main problem
concerning this issue is the need for using the general procedure described in 7.2.1(5), because the cable-to-deck
connection prevents the use of the simplified models of Table 7.1.

A gaussian probability density function with a coefficient of variation of 15% was assumed for the glued-laminated
timber. Consistent with the traditional ultimate limit state design (level 1 approach), a design bending strength of
fm,g,0=18,5MPa was used for the glulam elements. Fe510 was considered for the pylons and a high grade steel with
fsy«=700MPa was used for the stay elements. With the usual safety factor of 1,30 for structural timber and the assumed
coefficient of variation, these correspond to mean values of 31,9Mpa. Given the controlled production conditions and
for the sake of simplicity, COV=0 was generally adopted for the steel, though a range of values was tested in the
parametric study which led to Figure 5.

Shape and sizing parameters referred to in Table 1 were also initially considered as random variables, with coefficients
of variation of 0.01. However, the results have shown no significant differences from the situation in which these
parameters were considered as deterministic. Given the strong correlation between Young modulus and bending
strength, here assumed as totally correlated , no simultaneous randomness was allowed for these two parameters for the
reliability index evaluation.

In this example, the probability of failure concerns critical stresses throughout the structure, induced by the loadings.
However, other failure modes or criteria could be used as well, such as the excessive deflection or cable understressing.
The initial design was optimized through the use of the multicriteria approach described in section 6 to compare the
reliability index and bimodal bounds in both cases. Starting and optimized values of design variables are listed in Table
1. The overall achieved cost reduction was about 39%. For the starting design, a minimum reliability index of 3=3.47,
with an associate failure probability of ®(-) = 2.6E-04 and second order bounds of 2.55E-04 < P¢ < 2.57E-04 were
found. The values for the optimized solution were $=4.14, ®(-p) =1.75E-05 and 1.75E-06 < Pf < 3.55E-05. The bound
interval show that most of the nearly 1000 limit states considered are highly correlated.



A parametric analysis was also conducted to evaluate the influence of the various random parameters involved. Figure 5
summarizes these results.

DV Starting Value | Optimized Value DV Starting Value | Optimized Value
1 49500 .54349 2 11.00000 10.00000
3 .40000 .20000 4 .40000 .20000
5 .01200 .01000 6 .01200 .01000
7 .60000 .30000 8 .01200 .01000
9 .40000 .20000 10 .40000 .20000
11 .01200 .01000 12 .01200 .01000
13 .50000 .30000 14 .01200 .01000
15 .00030 .00042 16 .00030 .00015
17 .00030 .00047 18 .00030 .00010
19 50.00000 245.61128 20 50.00000 88.70785
21 50.00000 189.93720 22 50.00000 39.50334
23 .75000 1.54763 24 .50000 .30000
25 7.50000 5.25753 26 7.50000 5.64119
27 5.50000 4.00000 28 9.00000 9.36154

Table 1 — Initial and final (optimized) values of design variables
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Figure 5 — Parametric analysis on the influence of various random parameters
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