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First Order Reliability Methods

1. Introduction
The first developments of First Order Reliability Methods, also known as FORM
methods took place almost 30 years ago. Since then the methods have been
refined and extended significantly and by now they form one of the most
important methods for reliability evaluations in structural reliability theory. Several
commercial computer codes have been developed for FORM analysis and the
methods are widely used in practical engineering problems and for code
calibration purposes.
In the present chapter first the basic idea behind the FORM methods will be
highlighted and thereafter the individual steps of the methods will be explained in
detail.

2. Failure Events and Basic Random Variables
In reliability analysis of technical systems and components the main problem is to
evaluate the probability of failure corresponding to a specified reference period.
However, also other non-failure states of the considered component or system
may be of interest, such as excessive damage, unavailability, etc.
In general any state, which may be associated with consequences in terms of
costs, loss of lives and impact to the environment are of interest. In the following
we will not different between these different types of states but for simplicity refer
to all these as being failure events, however, bearing in mind that also non-failure
states may be considered in the same manner.

It is convenient to describe failure events in terms of functional relations, which if
they are fulfilled define that the considered event will occur. A failure event may
be described by a functional relation, the limit state function )(xg in the following
way

{ }0)( ≤= xF g (1)

where the components of the vector x are realisations of the so-called basic
random variables X representing all the relevant uncertainties influencing the
probability of failure. In Equation (1) the failure event F is simply defined as the
set of realisation of the function )(xg , which are zero or negative.

As already mentioned other events than failure may be of interest in reliability
analysis and e.g. in reliability updating problems also events of the following form
are highly relevant

{ }0)( == xI h (2)
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Having defined the failure event the probability of failure may be determined by
the following integral

∫
≤

=
0)(

)(
x

X xx
g

f dfP (3)

where )(xXf is the joint probability density function of the random variables X .
This integral is, however, non-trivial to solve and numerical approximations are
expedient. Various methods for the solution of the integral in Equation (3) have
been proposed including numerical integration techniques, Monte Carlo
simulation and asymptotic Laplace expansions. Numerical integration techniques
very rapidly become in efficient for increasing dimension of the vector X and are
in general irrelevant. Monte Carlo simulation techniques may be efficient but in
the following we will direct the focus on the widely applied and quite efficient
FORM methods, which furthermore can be shown to be consistent with the
solutions obtained by asymptotic Laplace integral expansions.

3. Linear Limit State Functions and Normal Distributed Variables

For illustrative purposes we will first consider the case where the limit state
function )(xg is a linear function of the basic random variables X . Then we may
write the limit state function as
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If the basic random variables are normally distributed we furthermore have that
the linear safety margin M defined through
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is also normally distributed with mean value and variance
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where ijρ are the correlation coefficients between the variables iX and jX .

Defining the failure event by Equation (1) we can write the probability of failure as
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)0()0)(( ≤=≤= MPgPPF X (7)

which in this simple case reduces to the evaluation of the standard normal
distribution function

)( β−Φ=FP (8)

where β the so-called reliability index (due to Cornell [1] and Basler [2] ) is
given as

M

M

σ
µβ = (9)

The reliability index as defined in Equation (8) has a geometrical interpretation as
illustrated in Figure 1 where a two dimensional case is considered.

Figure 1 Illustration of the two-dimensional case of a linear limit state
function and standardised normally distributed variables U .

In Figure 1 the limit state function )(xg has been transformed into the limit state
function )(ug by normalisation of the random variables in to standardized
normally distributed random variables as

i

i
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Xi
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σ
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= (10)

such that the random variables iU have zero means and unit standard
deviations.
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Then the reliability index β has the simple geometrical interpretation as the
smallest distance from the line (or generally the hyper-plane) forming the
boundary between the safe domain and the failure domain, i.e. the domain
defined by the failure event. It should be noted that this definition of the reliability
index (due to Hasofer and Lind [3] does not depend on the limit state function but
rather the boundary between the safe domain and the failure domain. The point
on the failure surface with the smallest distance to origin is commonly denoted
the design point.

It is seen that the evaluation of the probability of failure in this simple case
reduces to some simple evaluations in terms of mean values and standard
deviations of the basic random variables, i.e. the first and second order
information.

Example
Consider a steel rod under pure tension loading. The rod will fail if the applied
stresses on the rod cross-sectional area exceeds the steel yield stress. The yield
stress R of the rod and the loading stress on the rod S are assumed to be
uncertain modelled by uncorrelated normal distributed variables. The mean
values and the standard deviations of the yield strength and the loading are given
as 35,350 == RR σµ MPa and 40,200 == SS σµ MPa respectively.

The limit state function describing the vent of failure may be written as

srg −=)(x

whereby the safety margin M may be written as

SRM −=

The mean value and standard deviation of the safety margin M are thus

150200350 =−=Mµ

15.534035 22 =+=Mσ

whereby we may calculate the reliability index as

84.2
15.53

150 ==β

Finally we have that the failure probability is determined as
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3104.2)84.2( −⋅=−Φ=FP

4. Non-linear Limit State Functions
When the limit state function is not linear in the basic random variables X the
situation is not as simple as outlined in the previous. An obvious approach is,
however, to represent the failure domain in terms of a linearization of the limit
state function, but the question remain how to do this appropriately.

Hasofer and Lind [3] suggested to perform this linearization in the design point of
the failure surface represented in normalised space. The situation is illustrated in
the two dimensional space in Figure 2.

Figure 2 Illustration of the linearization proposed by Hasofer and Lind [3] in
standard normal space.

In Figure 2 a principal sketch is given illustrating that the failure surface is
linearized in the design point by the line 0)( =′ ug .

As the limit state function is in general non-linear one does not know the design
point in advance and this has to be found iteratively e.g by solving the following
optimisation problem
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This problem may be solved in a number of different ways. Provided that the limit
state function is differentiable the following simple iteration scheme may be
followed
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which in a few, say 6-10 iterations will provide the design point *u as well as the
reliability index β .

Example
Consider again the steel rod from the previous example. However, now it is
assumed that the cross sectional areas of the steel rod A is also uncertain.
The steel yield stress R is normal distributed with mean values and standard
deviation 35,350 == RR σµ MPa and the loading S is normal distributed with
mean value and standard deviation 4,20 == RS σµ MPa. Finally the cross
sectional area A is also assumed normally distributed with mean value and
standard deviation 2,10 == AA σµ 2mm .

The limit state function may be written as

sarg −⋅=)(x

Now the first step is to transform the normally distributed random variables R , A
and S into standardized normally distributed random variables, i.e.
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The limit state function may now be written in the space of the standardized
normally distributed random variables as
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The reliability index and the design point may now be determined in accordance
with Equation (11) as

ARSAR αβαααα
β

7040700350

3300

+−+
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)70350(
1

AR k
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)70700(
1

RA k
βαα +−=

kS

40=α

with
222
SARk ααα ++=

which by calculation gives the iteration history shown in Table 1

Table 1 Iteration history for the non-linear limit state example

5. Correlated and Dependent Random Variables

The situation where basic random variables X are stochastically dependent is
often encountered in practical problems. For normally distributed random
variables we remember that the joint probability distribution function may be
described in terms of the first two moments, i.e. the mean value vector and the
covariance matrix. This is, however, only the case for normally or log-normally
distributed random variables.
Considering in the following the case of normally distributed random variables
these situations may be treated completely along the same lines as described in
the foregoing. However, provided that we in addition to the transformation by
which we go from a limit state function expressed in X variables to a limit state
function expressed in U variables introduce an additional transformation in
between where we obtain the considered random variables first are made
uncorrelated before they are normalised. I.e. the row of transformations yields

UYX →→

In the following we will see how this transformation may be implemented in the
iterative outlined previously.

Iteration Start 1 2 3 4 15
β 3.0000 5.4218 4.3607 4.7149 4.5973 4.6400
αR -0.5800 -0.3664 0.0041 -0.0647 -0.0312 -0.0382
αΑ -0.5800 -0.9283 -0.9973 -0.9961 -0.9975 -0.9963
αS 0.5800 0.0642 0.0729 0.0597 0.0632 0.0768
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Let us assume that the basic random variables X are correlated with covariance
matrix given as

[ ] [ ] [ ]

[ ] [ ] 
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If only the diagonal elements of this matrix are non-zero clearly the basic random
variables are uncorrelated. However, according to the theorems of linear algebra
it is possible to transform the coordinate system of the X variables into a
coordinate system spanned by Y variables such that the covariance matrix for the
Y variables has the following form
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YC (14)

Such a transformation may be performed as

XAY T= (15)

where A is an orthogonal matrix with column vectors equal to the orthonormal
eigenvectors of XC .

By this transformation we achieve that the mean value vector of Y are given as

[ ] XAYE T=

and the variances of Y are equal to the eigenvalues of the matrix XC , i.e.

ACAC XY
T=

In case the stochastically dependent basic random variables are not normally or
log-normally distributed the above described transformation is not appropriate
and other transformations may be applied. The interested reader is referred to
literature for further information on e.g. the Nataf transformations see e.g.
Madsen et al. [4].
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In the following we will not consider the numerical implications of the
transformation described in the foregoing as these become somewhat involving
for hand calculations. Standard commercial software for FORM analysis include
these transformations as an option.

6. Non-Normal Distributed Random Variables

As a further development of the iterative calculation scheme for the evaluation of
the failure probability we need to consider the cases where also non-normally
distributed random variables are present.

One of the commonly used approaches for treating this situation is to
approximate the probability distribution function and the probability density
function for the non-normally distributed random variables by normal distribution
and normal density functions.
As the design point is usually located in the tails of the distribution functions of
the basic random variables the scheme is often referred to as the “normal tail
approximation”.

Denoting by *x the design point the approximation is introduced by
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where
iXµ′ and

iXσ are the unknown mean value and standard deviation of the

approximating normal distribution.

Solving Equation (16) and (17) with respect to
iXµ′ and

iXσ we obtain
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This transformation may be introduced in the iterative evaluation of the reliability
index as a final step before the basic random variables are normalised.
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7. Software for FORM analysis

Several software packages are available for the FORM analysis following the
principles out lined in the forgoing sections. Most of the programs are more or
less self-explanatory provided that the basic principles of FORM analysis are
known.

The reader is referred to software packages such as STRUREL and VAP for
which more information is available on the www.
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